OBSERVATIONS UPON THE OSTEOLOGY OF THE ORDER TUBINARES AND STEGANOPODES.

WY DR. R. W. ShuFELDT, U. S. ARMY.
The order Tubinares has been made to include the Albatrosses, Fulmars, Shearwaters, and Petrels; the Albatrosses being carried in the family Diomedcild, and the remaining forms in the fimily Procellaride, with such divisions in each into subfamilies and genera as our present knowledge of their structure seems to warrant.

A splendid contribution to the anatomy and classification of the Trbinures was left us by my talented friend Mr. WT. A. Forbes, ${ }^{*}$ who so ably examined the material for this sulyeet collected by the Challonger experlition.

As an introluction to his work, Mr. Forbes gives ins a vory excellent acconnt of the "Previous Literature on the Anatomy and Classification of the Tubinares," which goes to show that the study of the structure of these birts has by no means been neglected.

My material at the present time is quite limited, althongh I have at my disposal everything the Smithsonian Institution collections contain. Under these circumstances I can hardly hope to add anything to the exhanstive researches of Forbes, who hat at his command alcoholic specimens and skeletons of nearly all the genera known to us. His illustrations, howerer, are not many, so far as the skeletons of some of the types are coucerned, and I am in hopes that this part of my labor will be acceptable to those who may take up the subject in future, and not hare at hand, perhaps, some of the skeletons which I have figured to illustrate this memoir.

My remarks will be confined principally to the skull of the adnlt Albatross, the skeleton of the adult Fulmar, and the skeleton of the adult Gray Fork-tailed Petrel.

Representing the Shearwaters, I hare nothing except one sterum of Puffinus major, collected by Mr. N. P. Scudder, and an imperfect sknll of a Shearwater collected by Dall, which, from its measurements and the locality in which it was picked up (a beach specimen), I take to he Puffinus tenuirostris.

I am indebted to Dr. T. H. Bean, of the Smithsonian Institution, for the four fine alcoholic heads of Diomedea albatrus, collected by him in

[^0]Ahaka. They have been of the greatest service to me. This bird ranges over the Pacific Ocean at large.
Rodgers' Fulmar (F. glacialis roilgersii), the skeleton of which we will (xamine, is confined to the North Pacific. This is likewise the habitat of the Fork-tailed Petrel (O. furcata), four nearly perfect skeletons of which bind are fond in our list for examination.

The skull of the donbtful species of Albatross, No. 16738, fiom Oonalaska, differs from those in my possession of D. albatrus, and probably is some other species, perhaps D. nigripes or Phobetria fuliginosa.

The sternm of an Albatross bonght by Mr. Jony in the Tokio market appears to agree very well with specimens of the sternum of the Short-tailed Albatross.

Sheleton of Oceanodrona furcata (Fork-tatled Petrel.)

(Fig. 1.)
We find in the skull of this Petrel some very excellent characters, a number of which it holds in common with the Fulmars, and still fewer with the Albatrosses.
legarding it from a lateral view, we observe the superior mandible to be powerfnlly hooked, with the culmen, transversely, very narrow between the longitudinally elliptical osseons nares.

The hasil assumes the holorhinal type, and a concavity appears above, over the region of the cranio-facial junction.

A lacromal is a very peculiar bone in this bird, it, with a projecting, part of the frontal at the superior externo-anterior angle of the orbit, having yuite anextensive face that looks directly backward, thas forming a good share of the anterior wall of the orbital cavity. From this portion two processes are sent ont; the one reaches directly forwarl to articu. late by its extremity with the hinder free margin of the corresponding nasal. This process forms a wall for the mper part of the rhinat cham:
ber, and may or may not leave a longitudinal, spindle-shaped foramen between its upper margin and the united free upper border of the nasal and frontal. (Fig. 1.)

The remaining process is the descending process of the lachrymal, and it is orerlapped posteriorly at its middle by the pars-plana, but reaches the infraorbital bar by the latter being bent at a sharp angle mpward to meet it.

This process has a circular foramen in front which leads into its interual carity, but for which I fail to find an exit or recognize the use of to the bone unless it be a pnemmatic opening.

The wing of the ethmoid completely fills in the remainder of the anterior wall for the orbit, being impervious in all its parts. It is separated from its fellow of the opposite side by a median superior area of bone, concave on its posterior aspect. This is the mesethmoid, and is perforated for the passage of the olfactory nerves, the entire wall of the brain case being open opposite it. It is evident that this latter arrangement gives rise to a large subcircular foramen in each orbital wall at the upper postero superior aspect, through which we may sce into the cavity of the brainease. The optic foramen seems to be intact and perfect in all cases. Beyond it there is another circular foramen about the same size, which pierces the interorbital septum here-really a concavity between the sloping walls of the pars-plana on one hand and the lower portion of the anterior wall of the brain-case on the other.

The quadrate has a form much the same as in birds generalls, but the mandibular facets at its foot are characteristic. The outer and oblong one is placed obliquely, its anterior end being forward; the inner and lower one, in addition to a facet which it has placed nearly in the horizontal plane, has another which looks almost directly forward. This latter one is transversely grooved for its entire length. Viewing this skull from abore, we find it marked by a shallow, median groore, being deepest between the orbits.

The luniform, supraorbital, glandular depressions occupy the entire upper free margins of these cavities, extending between the lacrymals and upturned, pointed post-frontals. They are clean-cnt and deep, being of about an equal width thronghout.

Posteriorly the skull is smooth and rounded, in direct continuation of a similar character of surface of the parietal region. It lacks all those angular definitions of areas so prominent in the Alcille and Urintoride.

The crotaphyte fossie are lateral aud very feebly pronounced. Secen upon its muder side, we at once discover that the skull of this Petrel presents all the characters of a reritable Cecomorph, which it is. The arrangement of the bones of the hard palate is essentially the same as in the Loons, Auks, and Guillemots. We notice here, howerer, that in this Petrel the palatines each present a couvexity towarl each other opposite where they meet the maxillo-palatines. These latter are thin, firm plates of bone arranged as in the Auks or Gulls, with the excep-
tion that their median free margins seem to anchylos with the corresponding elges of the palatines over which they lay; consequently upon this view they are shut ont of sight and do not appear in the interpalatine space.

The romer is very long, being half a kollow eylinder behind, with its convex surface downard; the posterior end of this joins the palatines in the usual way. Below, it is longitndinally grooved in the median line. This groove is continted forward as a carimation on the anterior portion, to terminate in a little spike in front. The concarity of the half eylinder and the anterior portion form togather a long gutter for the rostrum of the sphenoid.

Fig. 1. Complete skeleton of Occanodroma furcata. (Specimen 16990, Smithsomian collection.) Life sizo. By the author.

The pterygnids are slender, straiglt bones; their anterior heads meet each other and the heads of the palatines, the four forming a groove above for the under convex surface of the presphenodal rostrmm.

There is no sign whaterer of the presence of basi pterygoid processes. Huxley mentions their occurrence in Procellaria gigantea in his Classification of Birds.

The Eustachian tubes seem to have a common aperture, and the external opening is nearly waked.

Behind this orifice the basi-temporal region is represented by a broad area, which, in common with the margins of the subcircular foramen magnum and the small hemispherical and sessile condyle, is in the horizontal plane.

An upper view of the mandible shows it to be perfectly V-shaped, with rather a short, longitudinally groored symphysis. Its anterior apex is at the intersection of the lower ramal borders, which are straight limes, while the superior borders, forming as they do the sides of the symphysial groore above, become gently conrex and approach each other to meet in this apex below. The anterior end of the mandible in an Albatross is shaped in much the same manner.

The side of each ramus is broad from above downward just beyond the fecbly pronounced coronoid process. Beyoud this the upper and lower borders are nearly parallel, and the space they include quite narrow.

A mandibnlar end is triangular in ontline with the apex below, and the plane of its area making but a slight angle with the plane in which the inferior ramal borders are found.

The original elements of this lower jaw are completely mited together, leaving searcely any trace of their original margins or a ramal vacuity where it usually occurs in many birds.

For the rest the bone is pneumatic, the foramina being at their usual sites, upon the inturned processes of the articular ends.

Petrels have a broad first basi-branchial in their hyoid arches, which co-ossifies with a spine-like second basi-branchial.

The cerato-hyals and glosso-hyal never form in bone, while the second arches are exceedingly delicate osseous threads in Oceanodroma, curving up behind the occiput in the usual fashion of the class; these "greater cornua" being composed of the common elements and articu. lated in the common way.

Of the rertcbral column, ctc.-Usually in this Petrel the first free pair of tiny ribs occur upon the fourteenth vertebra of the colnmm, but in one of these specimeus they are liberated also on the thirteenth. In either event, however, there is a long, delicate free pair suspended from the fifteenth rertebra.

Neural spines occur upon the second to the sixth, inclusice, bnt are from thence onward suppressed until this feature makes its appearance again in the fourtecuth vertebra. The hyapophysial canal is found in the sixth, serenth, and eighth, but thereafter a process is fonnd all the way through the series to the sacrum. These hyapophysial processes are quite prominent in mid-dorsal region. Here, too, the neural spines are rery intimately connected together, but nevertheless the vertebrie are all movable upon one another.

From the sixteenth to the twentr-first vertebra, inclusire, we find : Proc. N. M. S8-17
series of true ribs occuring, comnected to the stermm by costal ribs. They snpport anchylosed epiplemal appendages, which mas lap two ribs in the middle of the series.

A delicate pair of ribs also spring from beneath the ilia, but their hamapophyses do not reach the costal borlers of the stermum.

These dorsal rertebre are almost entirely devoid of metapophyses or interlacing spicula above. Their articulations are heterocelous, and they are non-premmatic thronghout the series.

In the peleis the anterion ends of the ilia are truncate from before backward, and their inner margins do not nsmally meet the nemal crest of the sacmm, leaving, in consequence, "ilio-neural grooves" at their sides. These bones are narrow, of nearly an equal width, and coneave in both directions. They rise orer the acetabula, on either side, to form small convex areas to the rear and abore these cavities. Below this the remainder of each ilimm, aided by the corresponding ischimm, form the drooping sides of the pelvis so characteristic of the Petrels

Wach ischimm has a posterior process, which, after forming the superior bountary to the obturator space, enres downward to become an expanded, foot-shaped end, which eloses in the aforesaid space by having the lower margin of the foot applied to the upper margin of the post-pubis.

The ischiatic foramen is nearly circular and, in common with the acetabulnm, rather small.

There is no pro-pubis in this Fork-tailed Petrel, and the obturator foramen and space, as a rule, form one vaenity.

Eight spreading candal vertebra, with a quadrilateral pygostyle, make up the skeleton of the tail. There appear to be many more of these segments, as the united uro-sacral vertebre beyond them seem to contimue the series so perfectly. This is still more strikiug in Fulmurus.

Of the stermum and pentoral "roch.-The furcula is of the U-shaped rariety, and curved backwarl toward the stermum, its quadrate hypocleidimm having its lower border usnally in contact with the upper border of the protrmding carinal angle.

The clavicular limbs are about of an equal width throughont, the posterior tips of their heats becoming pointed, and in articulation meet the scapmar heats at their inner angles. The onter aspect of each of these heads of the clavicular limbs are modeled so as to form an extensire concare facet for the head of the corresponding enacoid. This arrangement is not seen in the Albatrosses nor Fulmars.

A coracoid is pincipally notable for its greatly expanded sternal end, the outer angle of which is much froduced.

Its shaft is subeylindrical and its head tnberons. The scapular process descembls mon the immer side of the shaft, lont, so far as I can see, is not pierced by any foramen, as it is in the Fulmars and Diomedea.

A scapula is dilated posteriorly and truncate after the mamer most
common to birds; its head is rather broad and compressed from abore downward.
The entire pectoral arch is non-pneumatic, in keeping with the most of the rest of the skeleton.
The body of the sternm in Occanodroma is of a square outline, with its postero-lateral angles slightly produced and its xiphoidal border entire. Abore it is concave, being correspondingly conrex upon its pectoral aspect. The carina is deep in front and gradually slopes to the mid-point of the hinder border of the sternal body. Its angle protrudes and its anterior margin is concare.

Each costal border has six articnlar facets upon it, and the costal processes are triangulai in outline aud quite prominent. The mannbrium is wedge-shaped and small, and the coracoilal grooves nearly or quite meet at its lase.

The chief pectoral muscular line starts from a point on the lower lip of a coracoidal groove half way between the manbrimm and costal border, to be produced posteriorly and terminate at the junction of hinder and middle thirds of the line made by the carina where it joins the sternal body. This bone is non-pmemmatic.

Of the appendicular sheleton.-When closed in a position of rest the bones of the autibrachium rather exceed in length the humerus, and both are long for the size of the bird.

The shaft of the latter bone is subeylindrical and nearly straight, viewed from any aspect. Curling, as it does, far over the psendo-pnenmatic fossa, the ulnar crest forms a prominent feature at the proximal end of the bone. Another and smaller fossa, protected somewhat in a similar manner by the orerhanging limmeral head, is separated from the former by a bony bridge.
The radial erest is short, but well prononnced, with its free border conver.

At the distal extremity of the humerus we notice a conspicnous ectocondyloid process, and to its inner side at the base of the shaft, beyond the trochlear tubercles, a deep pit.

The anconal aspect of this extremity is profoundly marked by a median tendinal groove. The bone is about 3.5 centimeters long.

After very careful search at the elbows of all four of these specimens of Oceanodroma furcata I fail to find the slightest trace of anything like a sesamoid boue, and the specimens are in a condition, too, that if they existed they would more than likely be there.

I am aware of the existence of Reinhardt's paper upou this subject, but it is not at the present writing available to me, and I can not say whether he claims to hare fomd these sesamoids in Dcenodroma or not.

The shaft of radius is very straight and that of the ulua not much bowed, so we have a small interosseous space in this Petrel.

The skeleton of manus is long (4.55^{cm}), but does not call for special remark beyond the fact that pollex digit does not bear a claw, nor does
the distal phalanx of index in the specimens, althongh the latter under the microseope secms to have a facet there for that purpose.
The expanded phalimx above this one is not perforated (Fig. 1), as it so often is in the Leride. The limbs of this skeleton are non-pnemmatic.

In the pelvic extremity the femur is comparatively short, its average length being 1.5^{cm}, the tibio-tarsus measuring $3 . \delta^{\mathrm{cm}}$, and the tarso-metatarsus $2.2^{\circ \mathrm{m}}$. The femoral shaft is cylindrical and slightly arehed forward. Its trochanterian ridge is suppressed, being on a lerel with the summit of the bone, while its head is quite sessile and excarated for the round ligament. Distally its coudyles are proportionately developed, the onter one being rather the lower of the two.
Tibio tarsus also has quite a straight and smooth shaft, presenting ail the characters as commonly seen in the majority of the class. Its own special character, however, which its owner seems to holid in common with the family, consists in a martsed prominence of the procuemial ridge over the nearly aborted eetoenemial ridge. Neither of these extend for any distance down the shaft, but are, on the contrary, directed equally upward and forward in rather a striking maner.

I have failed to discover the presence of a patella in this Petrel, but from the fact that this sesamoid occms among the Fulmars-birds with a tibia very much like our present subject-I think we are justified in believing that perhaps a very mimute one is to be found in the tendon.

This latter has been scraped away in every instance by the preparator, whereas the tendons at the elbow were allowed to remain.

The fibula is extremely short and delicately construeted, extending but a very short distance below its ridge on the side of the other legbone.

Hypotarsus of the next segment of this extremity seems to have but a single median groove at its posterior aspect for the guidance of tendons. This is continued for the eutire length of the shaft behind, beeoming more faintly marked as we descend the bone, while anteriorly this longitudinal groove is strongly marked.

The first metatarsal is a diminutive bone, attached to the side of the main shaft at its nsual site by ligament. It has articulating with it the ungual joint, the basal one nerer appearing in these birls. Of the distal trochle:e the inner one is the most elevated and at the same time most posterior.

The podal joints of the auterior toes are extremely long and delicate, but otherwise arranged upon the plan most common to the avian foot.

BRIEF SUMMARY OF THE OSTEOLOGICAL CHARACTERS OF OCEANODROMA FURCATA.
(1) Superior osscons mandible powerfully hooked; culmen eonivex; nasal holorhinal; lacrymal with long, anterior proeess, which extends forwarl to the nasal; maxillo-jugal bar bent at an angle upward to meet deseending process of lacerymal.
(3) Ethmoid peculiarly bulky and pierced by the offactories. Crotaphyte fossa lateral; maxillo-palatines do not encroach upon the interpalatine space. As negative characters: Basipterygoid processes not present; angle of mandible truncate (no processes); no ramal vacuity.
(3) Sternal end of coracoid much produced laterally and externally. Hypocleidium of furcula in contact when articulated with anterior margin of carina of the sternum.
(4) Xiphoidal end of stemmm a transrease straight line, beither feuestrated nor notched; carina deep in front, occupies entire length of sternal body.
(5) Humerus possesses an cetocondyloid process, and is shorter than the skelcton of antibrachium.
(6) Accessory metatarsal is free and articulates with ningual joint of hallux, the basal one not appearing.

The Skeleton in the Fulmars (Fulmarts glacialis rodgERSII).

There are but a few unimportant differences between the skeleton of Rodgers' Fulmar and F. glacialis, and I prefer to confine myself to the discussion of the former bird in my description of the osteological characters of those well-known representatives of the order Tubinares. Moreorer, as they possess not a few characters in common with Oceanodroma, I feel at liberty to make this description rather a comparative one than otherwise, as my account of the osteological characters of the latter form is quite full; thus my labor will be lessened, and I know the result will be of more value and greater use.

The superior mandible in the skull of Rodgers' Fulmar is large and massive; its posterior two-thirds is conrex, while a smaller median conrexity is engrafted upon its anterior end, which is produced downward in a powerful hook.

The margins are likewise gently convex and cultrate. Each narial aperture is spindle-formed and the nasal is of the loolorhinal type, its two processes being wide and thoronghly incorporated with the surrounding bones.

We find the lacrymal constructed upon the same principle as in the Fork-tailed Petrel, though the upper margin of the anterior process unites with the frontal and nasal above it. Then the pars plana and the body of the bone have also merged into each other, learing us in doubt as to the exact locality of the suture. The arrangement of the parts at the inner aspect of the orbital carity is as in Oceenodroma, but we obser re that foramina occurs over the ethmoidal wings, while the perforation is comparatively larger and, in fact, absorbs all that part of the bone entitled to such a name. The maxillo-jngal bar is not beut up to meet the lacrymal, and the quadrate is the same as in the Petrels.

Jutting out prominently from the sides each sphenotic process is of a quadrilateral outline, and a ridge upon their posterior aspects divide
either supmorbital ghamblar depression from the corresponding crotaphyte fossa.

Regarding this skull from above, we are to note how profoundly it is impressen by the glandular pits; that they tho not meet in the median line, and, further, that their position agrees precisely with what we found in Oceunodroma. A shallow, median groove here marks the skull, the remainder of which is smooth and globular. Viewed from behind, the peculiar form and position of the deep crotaphyte fosse forces itself upon ns, and the jutting sphenotic processes come directly into view. Underneath, the skull presents us with many points of interest.

Fig. 2. Kight latural vien of the skull of Fulmarus glacialis rodgersii, δ.
Fir. 3. Same form abore, mandible remored. Both figures drawn by the anthor from specimen 12613 of the Smithsonian collection. Life size.

The superior mandible is canoe slraped, with its prow to the front, and its deep concarity extending to the rear.
The maxillo-palatines are elliptical disks tilted up as in the Laride, and encroaching for their entire imer margins upon the interpalatine space, where ther are well separated from and parallel to each other.

Of extraordinary size, the romer (Fig. 6) in this Fulmar is of an elongated, cordate form, nearly flat, being slightly concave above; carinated in the median line beneath, with its anterior tip somewhat cepressed; and, finally. meeting the palatines behind as usual, these latter bones have to curl to one side to clear it laterally, for this vomer forms a rery complete floor to the rhinal chamber without coming in contact with its ncighbors.

Well over this romer, in the median line, the rostrm is cxtended as a long spiculiform process. The anterior ethmoidal margin is sharp, but becomes broad as the bone abuts against the region of the craniofacial hinge. Besond this it is sometimes extended as a semiosseous mediau supero-rhinal septum.

The palatines are also umsnally broan, their postero-external angles being well rounded off. Laterally they are quite horizontal, but each inner margin, just beyond the palatine heads, is turned down for a short distance as a prominent inner carination.

Thoroughly developed basi-pterygoid processes meet to articulate with others coming from the pterygoid bones themselves. Muxley found those present also in the Giant Fulmar, and I hare reason to suspect their presence in the Shearwaters (Puffinus).

In Rodgers' Fulmar the occipital condyle is hemispherical in form, and the outline of the foramen magnum sulbcircular.
I regret to say that I can offer nothing upon the hyoid arches of this Fulmar, as that part of the skeleton has been lost in all the specimens.

In the mandible the symphysis is short and sunken between the convex ramal walls. It protrudes slightly in frout as a blunt process.

Fig. 4. Basal siew of the sknll of Fulmarus glacialis roctgersii; mandible removed.
Fig. 5. Mandible of the same speimen, victed from abore.
Fig. 6. The vomer of the same, from abore. All these figures are life size, and drawn by the author $f_{\text {rom specimen }} 12613$ of the Smithsonian collection.

Both superior and inferior borders of the bone are rounded and the coronoid processes very feebly developerl.

Each surangular is pierced by an elliptical foramen, but the true ramal racnity is covered over by the extended growth of the mandib. nlar elements.

The angles are truncate, slight? produced below, and the artienlar cups show on their upper sides at the usual sites the large puenmatic foramen on either one. Much of the skull proper is likewise permeated by air.

Of the rertebral column and the rest of axial slieleton.-What I have said of the vertebral colmm of Oceanodroma applies almost exactly to the colmmn in this Fulmar; the twenty first vertebra, however, in both the common Fulmarus and F. rodgersii anchyloses as the anterion one of that series which goes to form the sacrum between the pelvic bones.

Its ribs in consequence meet a pair of costal ribs below, that in their turn articulate with the sternum.

Rodgers' Fnlmar has the hyapophysial eanal of the cerrical series passing through the sixth to the tenth rertebra, inelasive.

Horeorer, in the dorsal region we find this bird differs from the Petrel in having finly developed metapopliyses linking the onter ends of the transerse processes together.

The eleventh, twelfth, and thirteenth vertebre all have a large, single hypapophysis. This is not so long, and has lateral, basic processes in the next two, while through the dorsal series it becomes gradually longer, then shortens again, to appear for the last time as a minute point on the first sacral. From the secoud to the fourth, inclusive, the cervical vertehre not only have these hypapophyses, but equally welldereloped neural spines. The latter gradually disappear in the next two, and the arterial canal supplants the former.

The skeleton of the trunk of Fulmarus glacialis, from the specimen collected in the North Atlantic by Ludwig Kumlien in 1877, has been allowed to remain nicely articulated, with all the bones in their normal positions. In it the stermm is rer.r short and concave, while the six vertebral ribs descend almost directly to reach the costal ones, and other particulars are observed in which it agrees with F. rodgersii.

Epipleural appendages which belong to the ribs of this Fulmar anchylos with their borders, and never orerlap more than the next succeeding rib behind them.

Oceasionally among the vertebre we will find one that shows a puenmatic foramen, but I believe the ribs are solid, and air does not gain access to the interior of any of them. Sometimes in the last pair of sacral ribs one or the other may be but feebly developed and not have any free hrmapophysis to meet it below. Such is the ease in the skele. ton of Rodger's' Fulmar before me.

Kinship with the Albatross ummistakably crops out in the stermm of this bird. A glanee at the figures is enough to satisfy one of this fact.

In outline the bone is quites square, and althongh in some specimens the xiphoidal border is, like in the one I figure, jagged to an extent that leads us to believe it to be without any regular pattern, I have, nevertheless, sufficient material before me to prove that the tendency of the bone is to become donbly notched.

Above, it is very concave, accompanied of course by a correspoming convexity of the pectoral aspect. It is upon this latter that we notice that the museular line meets the base of the keel at junction of middle and anterior thind, differing considerably from Oceanodroma in this respect.

The carina is deep in front and gradually slopes away to the posterior margin. Its anterior border is broad and straight, being deeply grooved from above downward. The angle stands out quite prominently and

Fig. 7. Inferior view of the sternum of Fulmarus glacialis rodgersii. Life size.
Fig. 8. The same bone; right lateral riem.
Fig. 9. Direct anterior aspect of right coracoid and scapula. Same specimen. All life size. Drawn by the author from specimen 12013 of the Smithsonian collection.
may have its enil truncate and thickened. Each costal border is rery wide from side to side, and supports the six prominent, regularly arranged facets for the costal ribs.

There are no pmenmatic foramina to be seen among them. Indeed, this is one of the differerees between this bone and the sternum of an Albatross, which is thoronghly permeated by air cavities. The anterior border, between the rather lofty costal processes, is bent forward at an angle, the apex of which supports below the trihedral manubrium.

The conatodal grooves are long and shallow, meeting mesiad at the manubial base and having a lip of bone at their externo-inferior borders to hold each coracoid in position when articulated.

As in the sternmm just described, the elements of the pectoral arch or shonlder-girdle are non-pmematic, and, in consequence, proportionately heavy:

The fierenk when articnlated differs from that of the Petrel in not reaching the anterior border of the sternum. Viewed from in front we find it to be of the U shaped style, with the limbs of nearly uniform ealiber throughout.

In articnlation the pointed clavicular heads merely rest against the imer aspect of each coracoidal summit, while their tips overlap the antero-median angle of either scapular head. Thus the tendinal canal is completely closed in among the three bones.

This furcula lias no hyprocleidium, but the areh is considerably thickened at its usual site.
A coracoil has a large tuberons head, which is bent formard and toward the median line. The seapnlar process is rery extensive, being carried well down upon the antero posteriorly compressed shaft. I believe it will always be found to be pierced by the foramen. The coracoid of this Fulmar acquires a very unique form from the extraordinary manner in which the infero lateral angle of its sternal extremity is produced. This is even more striking than we found it in the Petrel.

The head of a scapula is broad transversely and somewhat compressed from above dommard. It offers about the usual amonnt of articular surface for the glenoid cavity, and when in situ its anterior border occupies the entire superior tine of the scapular process of the corresponding coracoid.

The blate of the bone is comparatively short and gently arches over the ribs in the usnal manner. Its anterior two-thirds is narrow and thickened, while its hinder extremity is slightly dilated and its tip romuded off.

These characters of the shonlder-girdle, as I have given them, agree in the five or six specimens before me, and I have intentionally omitted any slight deviation due to individual pecnliarity.

Of the peltis and caudal rertebra.-As already mentioned above, the anterior vertebra of the pelvie sacrom extends beyond the iliae bones (Figs. 10 and 11), and its neural spine is indistingnishably anchylosed with that of the next one behind it, and so on to a point opposite the acetabule, where this nenral crest is suppressed, and the rim that surmounts it for its entire length merges into the flatened nemral arches of the next three or four vertebrie. Both at this point, and still more so behind, these sacral vertebrer are musually well individualized, so that the skeleton of the tail seems to really begin between the cotyloid carities. Uswally, howerer, eleven or twelve are anchylosed in the "sacrum" and eight or nine are free and constitnte the tail, in aldition to the terminal prgostyle.

As a rule the anterior portion of each ilimm is depressed below the neural crest of the united sacral vertehre, having "ilio-neural" canals to their inner sides. Each anterior iliac border is truncate, thin, faintly emarginated, and sometimes unerenly serrated, while the blade of the bone is concave from before backward, as well as from side to side, and contracts slightly before reaching the cotyloid cavity.

Upon the mnder sides six rertebre throw ont their processes a gainst them, and both pairs of sacral ribs may become anchylosed, thongh usually the anterior pair remain free, connecting with the sternum by costal ribs.

The serenth vertebra of the sacrum is the only one where the lateral apophyses are reduced. It is immediately opposite the acetabula.

From the eighth, inclusive, and on, bowever, the plemr- and parapophyses regularly graduate into the form they assume in the true caudals, their processes being very nearly of an equal length and their extremities abutting against the free imer margins of the ilia.

So really, from an under view, the sacral and cutudal series of rertebre have all the appearance of a gradually modified chain of bones from the last dorsal; in short, a tail with the pelvic bones simply pressed against its sides to become ancliylosed there.

The post acetabular area of either ilimm is very narrow and gradually becomes reduced to a point behind, the surfaces turning toward each other as we proceed in that direction, being bomded externally by a raised border. This latter exteuds between the apex of each antitrochanter to the aforesaid point behind, where the ilia terminate posteriorly on either side.

From this line and downward the sides of the pelvis are formed behind by the remainder of each ilium, an ischium and a post-pubis.

Fig. 10. Left lateral view ol the pelvis and coccegeal vortebre of Fulmarus glacialis rodgersii, $\mathbf{o n}^{7}$. Lifo size. By the author. (Specimen 12613, Smithsonian collection.)

These surfaces look almost directly outward and only slightly upward. Each presents for our inspection the large subelliptical ischiatic foramen, the cotyloid cavity, and antitrochanter; and the obturator foramen, which here has almost entirely merged into the extensive and long, oval obturator space, closed in behind, as in the Petrels, by the pecnliarly formed foot-like process of the hinder end of the ischinm.

Just the fantest trame of a propmbis is seen in the pelvis of this Fulmar, while the post-pubis is narrow, nearly straight, slightly expanded behind where its uper edge meets the aforesaid process of the ischinm, heyond which it soon terminates in a square-

Fis. 11. The pelvis of Filmarus glacialis rodgr rsii, seen from abore. Same specimen as shown in Fig. 10. life size. By the anthor. cut end that in life is produced in a cartilage of an equal width for a short distance farther.

The coudal vertebre are all supplied with cherron bones, except the first two or three anterior ones. They become progr essively larger from before backward, and are all bifid, being profoundly cleft in an anteroposterior direction. This is continned to the lower angle of the prgostyle, where it is represented in most specimens by a notch.

These chevron bones are anchylosed to the vertebre over which they stand, and their bases are produced in front so as to encroach slightly upon the segment next in front of them, when the series is articulated in situ.

The prgostyle is a large quadrate bone, with sharpened anterior border, but thickened behind. A clean, circular formmen is generally to be found at its infero-posterior angle, indicating the point of mion of the two anterior rertebre that compose this compound bone, it being a racuity between their cherron bones.

Of the appendicular slieleton.-We find that both the pectoral and pelvic limbs in the Fulmars are non-pnemmatic, and much animal matter is contaned in the large carities of the long bones composing then.

When the skeleton of the pectoral limb is closed alongside the body in situ the bones of the antibrachium are but very slightly in adrance of the humerus, the ulna being nearly of a length with that bone and the radius slightly longer.

The slafts of these long bones are all notably straight, that of the humerus being subcylindrical on section and showing searcely any curvature viewed from either aspect.

The head of the humerus is fashioned as we found it in the Petrels, but the radial crest is more prominent and of a triangnlar form. Its distai extremity supports a large ectocondyloid process, between which aud the opposite border, on the palmar aspect, a conspicuous concavity exists, as described for Occanodromu.

Rudgers' Fulmar, as far as I can learn from the excellent material before me, is deroid of any such thing as sesamoids about the elbow-
joint, and this of course applies to the common Fulmar, of which there is an excellent ligamentous skeleton at hand.

The shaft of the ulna shows faintly the row of osseous papilliz for the quill-butts of the secondaries. So straight is the shaft of the radins that scarcely any interosseous space occurs between these autibrachial bones; such as it is, however, is long and narrow, extending between the shafts for their full length.

Carpus is composed of the tro usual segments, and corpo-metacarpus is formed much as we find it in the Laride. Pollex phalanx and the distal phalanx of the index are slender aud subtrihedral and both strikingly long.

The expanded portion of the proximal joint of index digit is not perforated, as in many Gulls, and the small joint next to it is about half as long.

Excepting the great difference in size the pelvic limb of this Fulmar nearly agrees with the pelvic limb of Occanodroma. We obserse that the head of the femur is very much scooped out for the ligamentum teres and that the muscular lines mark its shaft pretty well. The patella and oddly.shaped head of tibio-tarsus I hare alreads figured elsewhere. (Proc. U. S. Nat. Mus., 1883, Vol. vi, p. 329, Fig. 5.) I know of no bird where the suppression of the ectocnemial ridge at the proximal end of the bone and the high development of the procuemial ridge is better shown.
The fibula is almost thread-like below its middle articulation with the greater leg-bone, and its lower extremity anchyloses with its shaft.

In the tarso-metatarsus the liypotarsus is donbly groored behind, but otherwise the arrangement of the accessory metatarsal and podal digits is essentially the same as described for the Petrels.

OSTEOLOGICAL POINTS WHEREIN OCEANODROMA FURCATA AND FULMARUS GLACIALIS RODGERSII DIFFER.

1. Oceenodroma.-Maxillo jugal bar bent upward at an angle to meet the descending process of lacrymal.
2. Fulmarus.-Maxillo-jugal bar nearly straight.
3. Oceanodroma.-Crotapliyte fossie lateral, feebly impressed, not produced to meet the occipital prominence behind.
4. Fulmarus.-Crotaphyte fosse extended to the posterior aspect and upon the occipital prominence ; deeply impressed.
5. Oceanodroma.-Masillo-palatines do not eneroach upon the interpalatine space. Vomer long and narrow, hinder half concave above, correspondingly convex below and longitudinally grooved; anterior half carinated below, pointed in front and its concarity above continuous with that of the posterior half.
6. Fulmarus.-Maxillo-palatines do encroach upon the interpalatine space. Vomer very large, nearly flat, broad, and general outline elongocordate.
7. Oceunodroma.-Basi-pterygoid processes entirely absent.
8. Fulmarus.-Basi-pterygoid processes present and thoronghly dereloper, anticulating with pterygoids.
9. Ocenodrome-Anterior tip of mandibular symphysis at the intersection of the right lines forming the inferior ramal borders. Surangular cutire.
10. Fulmarus-Anterior tip of mandibular symphysis prodnced directly with its protruding process squarely cut across. Surangular pierced by a foramen.
(6. Occumorloma.-Twenty-first rertebra of the spinal colum free. Xiphoidal extremity of stermm entire, its hinder border a transverse, straight line.
11. Fulmarus.-Twenty-first vertebra of the spinal column anchyloses with the pelvie sacrum. Xiphoidal end of sternmm not entire, its hinder border jagged with an evident predisposition to become two notehed.

NOTEA UPON SPECMMEN NO. 361S, SUPPOSED TO BE A SKULL OF IUFFINUS TENUIROSTHIS, AND OTIIER IIATERIAL.

It will be impossible for me to state positively as to what mamer of bird the skall No. 3618 of the tabulated list of material belonged, but there is some reason to believe it to be that of a Shearwater. It is evidently a specimen that has been pieked up on the beach, and was collected by Professor Dall at Oonalaska. Its basal points have been much broken and all the small free bones lost. As I have already said, my measurements of the specimen lead me to think that it is the skull of P. temuirostris and from an adnlt bird.

The superior mandible is upon the same type as Fulmarus, thongh much modificd. The supraorbital glandular depressions meet for a short distance in the median line.

The base of the orbit and surrounding parts are much as we find them in the Petrels and Fulmars, but the optic foramen and the foramen in the interorhital septum have run into one. Basi-pterygoidal facets are present at the base of the rostram.

The crotaphyte fosse are broad and deep, and meet the sides of the sumroceipital prominence, to be produced to some extent from either side mon its dome.

The foramen magnmm is unnsually large.
In I'upimus major the pectoral areh and stermm has the general form of the like parts in Fulmarus rodgersii, but differs from them in having the fureula meet the carina of the sternmm when articulated in life; in having the stermm a pheumatic bone, as in the Albatrosses; in the stemal horly heing comparatively longer; and in having its xiphoidal border two-notehed and convex forward.

OBSERYATIONS UPON TIE OSTEOLOGY OF DIOMEDEA ALBATRUS.
Althongh mate largely upon the characters presented by the osseous parts of the ronf of their months, I mxley's remark, in his Classification of Birds, that the Procellariade were aberrant forms and inclined to

Fig. 12. Skull of Diomedea allatrus, viewed from above, with mandillo removed. Drawn by the author from an Alarkan specimeu presented him by Dr. T. H. Bean. Slightly reduced.
ward the Pelicans and Cormorants, when we come to compare the skulls of the various forms referred to by that writer this statement will be seen to have a large measure of truth in it. The points he calls attention to are very well shown in the figures he presents us in his wellknown paper of Procellaria gigantea and Diomedea exulans (P. Z. S., 186it, 1). 431, Figs. 12 and 13).

In this particular instance I believe that this opinion of Professor Huxley will some day be verified, or just so soon as we become better acquainted with the entire structure of a number of the forms now sulpposed to be related. Anatomists have amply demonstrated during the past few years that this single character-the condition of the bones at the roof of the month-can not invariably be relied npon, and we must always look into and compare other structures if we wish to correctly judge of the true affinities of birds. The teachings of the law of evolution call for this above everything else that I know of, as we there learn how one such character may be retained while many others in the same organization may go on varying for ages.

In the skill of the Albatross we see the Pelican in its posterior view ; we see the Petrel; we see the Cormorant and Gamet foreshadowed in its palatines; we see the Fulmar, and we catch glimpses of the Gull; yet how hard it would be to put your finger upon the predominant type.

Upon lateral view we have the powerful superior mandible, with its terminal, decmed, and massive hook. Its culmen is romdly convex and its dentary borders are cultrate, the dentary processes behind being thrown down from beneath these lateral edges to meet the palatines below them and to their inner sides. Each nasal has been thoroughly absorbed in the adult, robbed of its individualits, and made to fulfill its part in the creation of this form of skull.

No nasal septum is present, and the bony nostrils are comparatively small and quite elliptical in outline. From the anterior are of each, upon the lateral aspect of this upper mandible, either side, a shallow, longitudial groove is carried forward, to merge into the dentary edge at the commencement of the mandibular hook. A lacrymal is a highly pmenmatic, freely articulaterl, bone, its descending process meeting the straight maxillo-jngal bar, and its postero external process above being rommed. Its imer border articulates with both the frontal and nasal, lere indistingnishably merged together.

An ethmoidal wing is not very powerfully developed and does not meet the lacrymal, as it does so extensively in the Fulmars and Petrels.

All the walls of the upper half of the orbit conspire to render it a hemiglobular cavity, the bottom of which is piereed by a cousiderable foramen leading to the opposite orbit.

The tract of the olfactory nere is nearly, quite in some specimens, bridged over by the extension of the concave anterior wall of the braincase. The optic foramen is small, circular, and nsually distinct.

Fig. 13. Right lateral view of the slull of Diomedea albatrus. specimen shown in Fig. 12. Amount of reduction the same. the "ossiculum lacrymo-palatinum" in situ from this aspect.

Proc. N. M. SS

Profundity of the orbit is much enhanced by the enormons postfrontal wings in this Albatross, and these are formed preeisely in the same way as we found them to be in the Puffins, only here the base of the latter laalf of the nasal pit remains.
The crotaphyte fossa is nearly entirely lateral. It is broad, though feebly impressed, and separated as usual from the nasal glandular depression on the posterior aspect of the sphenotic process by a narrow isthmus of the general superficies of the cranial vault.

Each quadrate is a large, powerful bone, built upon the same plan, in so far as its facets are concerned, as we saw in the Fulmar and Petrel. In this Short tailed Albatross, howerer, it is completely puenmatic, and a large foramen opens upon its posterior aspect.

Extremely interesting are the osseons openings to the internal ear, and the deep pit to the inmer side of the mastoidal head of the quadrate, which would weli repay thorongh comparison with similar formations in the skill of the Sula.

A triangular, bony wiug protects the foramen ovale in front, and a preumatic foramen may pierce the skull in its neighborhood.

Tiewed from above, we are enabled to see the furrows leading forward from the external narial apertures, the broad convexity hetween these latter and the cranio-facial region, where we can still see the traces of the nasal processes of the premaxillary.

Laterally are the lacrymals, with their sutures plainly visible connecting them with the naso-frontal margins.
l'osterior to these we have the most striking features of this aspect of the skull; these are the supraorbital glandular depressions.

I know of no bird where these are better marked than in this Albatross, they being profoundly excarated and of a definite reniform outline. Their convex surfaces are opposite each other, and separated by a fronto-median tract of some width. Each base is deficient in bone for a little less than its anterior half, while behind they bear the impress of the consolutions of the glands they lodge in life, and are perforated by a few small foramina.

To the rear of these pits the rault of the skull is broadly consex and presents at cither side the upper viems of the post-frontals and crotaphyte fossa.

In the skill of an undetermined species of Albatross (No. 16738 of the List) I notice that quite a perfect septum narium exists; a platform of bone extending between the lower margins of the external openings of the nostrilis forms its base, while the septum is reared in the median line and has a small perforation in its center.
This specimen has also a broad front to its mesethmoid, which terminates in a transverse line at the cranio-facial hinge. Just beyond this a thin, trimgular plate of bone is applied. The base of the triangle is also in the line of the cranio-facial hinge, though separated from the mesethmoid. Anteriorly its apex is produced to merge into the septum
narinm in the median plane. This arrangement is exactly what we fonnd in some of the Auks, though, of course, modeled to accommodate itself to the differently proportioned parts, and the nasal septum is also absent in the latter.

The cranio-facial hinge, then, in the Albatross is a very free one, thouglı not so much so as we find it in Sulc.

A direct basal view (Fig. 14) of the skull of Diomedea albatrus presents us from before backward the following points for examination: (1) The anterior half of the superior maudible is canoe-shaped, the prominent hook taking the place of the prow. (2) The largely dereloped palatines are considerably below the maxillo jugal bars; anteriorly they are carried forward as prominent and parallel ridges within the dentary borders of the premaxillary to subside on the inner sides of the canoe-shaped portion beyoud. (3) The postero external angles of the palatines are rounded, the "external lamins" being sharp, while the "internal lamine" are thickened and rather couspicuous carinations. (4) Between these latter an oral interspace occurs, which is carried forward as a deep median cleft as far as, or rather farther than, the point where the anterior ridges of the palatines described abore suoside upon the sides of the premaxillary. (5) At abont the middle point in this cleft a small oral plate of bone makes its appearauce; this is the foot of the anterior end of the large decurred romer of this Albatross. (6) A short distance posterior to this appear two slit-like marks, one on either side, their free ends being behind and close to the palatine bones; these are the inferior arcs of the maxillo-palatines. (7) The pterygoids are strong, straight bones, their lower aspects being rounded, their upper ones longitndinally sharp-crested; their heads and the palatine heads all meet to form upon their upper side a deep groove for the rostrum. (8) A considerable portion of this latter may be seen between this articulation and the basi-temporal region in the median line. (9) The Enstachian tubes are open, naked grooves. (10) The basi-temporal triangular area is quite as much contracted as we find it in Sula or Pelecanus. (11) The condyle is rather elerated and transversely ellip. tical. (12) The foramen magnum is large, broadly elliptical, with its major axis, like Pelecanus and Sula, in the median line. It is at the base of a notable conrexity which oecnpies all the area posterior to the basi-temporal region and extending from side to side betweeu the mastoidal prominence.

The periphery of the foramen magnum lies in a plane which makes an angle of 45 degrees with the plane of the basis cranii.

In addition to these primeipal characters, we must also notice that the inner facets on the mandibular feet of the quadrates are the lower, and are abont in the same plane with the lower margins of the iaternal lamine of the palatines.

Returning for the moment to these latter bones, we find that their "ascending processes" are lofty and hamdsomely curled about the an-

Fig. 14. Pasal view of the skull of Diomedea albatrus; mandible removed. By the author from the same specimen as shown in Figs. 12 athl 13; reduction the same.
terior portion of the united mesethmoid and rostrum. Their inner laminie are prodnced forward to anchylose with the linlos of the comer.

This latter bone is quite an extraordinary structure in an Albatross, and differs not a little in the various species. To get at its exact shape and relations to the surrounding structures I fonnd that I was obliged to ent away certain portions of a spare skull and remove it, together with the pterygoids and mutilated parts of the palatines. From this specimen I made the drawings presented in Figs. 16 and 17.

Viewing this from above, we find that all three bones contribute certain of their parts to form a deeply exeavated, longitudinal groove that extends the entire length of the structure. During life the spear-shaped rostrum rides in this, occupying, however, but the hinder two thiris of the chamel. Seen from the side, we fiud that the vomerine portion of this rostral bed is continned downward and forward as a median carination, which anteriorly curves down between the maxillo-palatines, to have its apex finished off in a little foot-like process which appears, as above described, in the interpalatine eleft.

Fig. 15. Posterior vien of the skull of Diomedea brachyura; mandible removed; lifo size. By the author from same specimen as Figs. 12 et seq.

In the undiagnosed skull of an Albatross (No. 16738) the pterygoids and palatines behave in the same way as in the Short-tailed variety, but the romer shows no mid channel beyond the end of the sphenoidal rostrum, is fully double the width of the other, and rather reminds us of the extraordinary romer of Rodgers' Fulmar. Anteriorly, however, its tip is carried down to appear in the inter-palatine cleft, as in D. albatrus. Forbes figures a romer similar to this for D. exulans in his Challenger memoir.

The maxillo-palatines are large, compact, elliptical plates. They stand but a few degrees removed from the vertical plane, each facing outward and slightly downwarl. Upon a lateral view the mandibular side nearly shuts this bone out of sight, and it is only in certain positions that we can secure a good look at it. The surface next the median
phane is smooth and but slighty consex, white the onter aspect has a rather spongy interlacement ol bony trabecule thrown upainst it, developed on the part of the maxiltary, premaxillary, and nasal, which most effectively act as its main supports.

In two of my specimens I find a small, delicate rod of bone attached by ligament to the upper aspect of the palatine body immediately beneath the ethmoidal wing. These ligaments hold it in an upright position, and its superior and stonter end is bent toward the median plane; from this extremity, also, ligaments are attached which pass to the inferior border of the pars-plana and perhaps across to the descending process of the lacrymal. This little bone I take to be the os mocinatum of other anatomists, and said by them to occur both in the Albatrosses and Gulls. It seems to play no other part in the bird's economy other than to afford additional support to the membranous wall that forms the lower half of the partition between the orbital cavity and the rhinal chamber.

As I have elsewhere stated, I have fomd this bone in but few other birds than this Albatross, one of the specimens of which, Diomeden albatrus, has it in a very perfect condition on both sides.

It has been my misfortme, too, not to have seen Professor Reinhardt's paper upon this subject and his figures showing its position in other birds. Whether the os uncinatum is a constant ossification or not my material is not sufficiently extensire for me to say.

Professor Parker also states that he has discovered its presence in the Ginll, but I have been mable to confirm this, although I have carefully examined many excellent specimens, with their ligaments still intact, of Larus glencus, L. philadelphie, Rissa, and others. This is what makes me think that perhaps it may not be a constant ossification, or perhaps occurs only in old birds and not in immature specimens. Forbes says of this ossification that, "in comnection with the descending limb of the lacrymal bone, there is often dereloped a peenliar ossicle, named by Brandt, who was the first to describe its existence, in Diomeden brachyura [albutrus! and Puffinus major, the 'ossienlum lachrymo-palatimm,' from its comection with those tro bones.
"Its nature and relations in the group have subsequently been more extensively investigated by Reinhardt, who calls it the 'os crochu.'
"When best developed, as in the Albatrosses, the ossiculum lacrymopalatmom is a small styliform ossicle of nearly eylindrical (as in Thel assiarche culminatu [Coll. Scientif. Mem., Pl. xxı, Fig. 7]) or somerrhat lamellar (Phoebetria juliginosa [Coll. Scientif. Mem., Pl.xxi, Fig. 8]) shape, attached above by anticulation to the inner face of the descending limb of the lachrymal bone, and below connected by a ligament to the upper surface of the palatine bone. Seen from the side, in the dried skull [his Pl. xxir, Fig. 1], the bone is visible below the malar areh. It lies, in the recent state, in a cavity between the nose and the roof of the mouth, in an oblique position, pointing downward and inward. This
bone is present in all the genera aud species of Albatrosses examined by me, as well as in Thalassiarche chlororhyncha, as mentioned by Reinhardt. In the Oceanitide, in Proecllaria, and Cymochorea, as well as Daption and Pagodroma, its place is taken by a narrow ligament, with a small, more or less ossified nodule of bone lying in it, only connected by connective tissue with the surrounding bones. In Acipetes, Prion, Puffinus, Majaqueus, Adamastor, and Estrelata it is small and delicate, articulating with the lacrymal abore and ending freely (in the cleaned skull) below.
"It is interesting to observe that a very similar bone, both as regards shape and position, occurs in the genus Fregata, as already pointed ont by Reinhardt, whose obserration I have been able to verify. But it also occurs in forms so different from these, as the Mfusophagidet, many Cuculide, Chunga, and Cariama, as well as in some Laride and Alcidee, so that its presence is obviously of no particular taxonomic value. Professor Parker informs me that its precise morphological significance is at present rather uncertain." (Coll. Scientif. Mem., p. 415.)

So prominent and jutting are the bony chambers which contain the organ of hearing upon the internal lateral aspects of the cranial cavity that the oral fossa, which harbors the hind brain in life, is far deeper than we would have any reason to suspect from an inspection of the posterior external view of the skull alone. This applies almost with equal truth to the fosse lodging the other lobes.

The usnal arterial and nervous foramina open here in nearly the same positions as we find them in birds generally.

Fig. 16. Left lateral view of vomer, pterygoid, and part of palatine of Diomedea culbatrus.
Fig. 17. The same bones viewed from above; v, vomor; $p l$, palatine (broken away in front) ; $p t$, pterfgoil. Both figures life size. By the anthor, from another specimen pesented lim by Dr. T. II. Bean. The little foot on the anterior end of the vomer makes its appearance in the median cleft just beyond the maxillo palatines, as seen in Fig. 14.

The pituitary fossa is deep and its posterior wall entire. There seems to be two carotid openings at its base, but they are very close together, and I wond not be surprised to find them mited in one in some specimens. The floor of this cranial eavity is a circular convexity, bounded on the sides by the bony wall of the middle ear, in front by the broad posterior wall of the pitnitary fossa, while behind, after a low descent, it opens out upou the tlat upper surface of the oecipital condyle. In front of the pituitary pit we find a considerable of a partition separating the two distinct and cireular optic foramina, each opening into an orbital Lavity. Above these there is a nearly horizontal shelf, which supports the rhinencephalon, and at its anterior apex the hinder edge of the median ethmoid is visible, which guides each olfactory into its covered passage beyond. Considerable diploie tissue is found betreen the tables of the vault of the cranium in this Albatross, and the skull as a whole seems to he pretty well permeated by air.

The sclerotals of an eyeball are comparatively small plates, with irregnarly serrated margins. They differ somewhat in their general outline, and there seems to be no fixed plan as to the method in which they shall overlap each other.

The symphysial extremity of the mandible (Fig. 19) is formed very much as it is in the Petrel, and evidently constructed upon the same plan. Its symphysis proper is exceedingly short and the superior excavation deep.

Old Albatrosses hare a median process co-ossified upon the under side of this with the bone. It is ensheathed in the horny integmment of the bill, receiving a scparate piece to cover it in that situation. The process itself is sometimes long and sharp, directed backward in the anterior ramal angle. It will be remembered that a somewhat similar structure was fomb in some of the Herons.

The shape of the mandible as a whole in this Albatross is precisely like the capital letter V , as in the Petrels.

Each ramus is deeper behind than it is in front, the transition being gradual, and lies principally in the vertical plane when the bird stands with his beak to the front.

The borders for nearly their entire length are rounded, the superior symphysial one alone being sharpened, and the coronoid process is but feebly pronounced. Both inner and outer aspect is for the most part smooth; the former for its anterior two-thirds is marked by a longitudinal, thickened ridge, while the latter shows many branching ramifications sunken below the general surface, and foramina, arrauged in two rows, are carried to its anterior chd.

The smrangular is usually piered by one or two small foramina in the same place as they appear in other water birds, where I have described them, thongh commonly only one is seen.

Albatrosses, in common with Aulis, Gulls, Guillemots, and others, have a fau-shaped process developed by the surangular, which remains
more or less distinct throughout life. It is seen reaching formard on the inner aspect of the bone, and seems to be principally designed to hold the splenial element in place, which latter in Diomedea may or may not completely occlude the true ramal vacuity. Quite a fossa is sometimes found posterior to the blade of this fan-shaped process in birds where its handle is more or less individualized.

These mandibular elements, for flat bones, interlock and cross each other in the most remarkable way in the neighborhood of this foramen, and their stuly in all birds is a very interesting one.

The articular cups are rery deep at their centers above, culminating in pueumatic pits; the usual circular foramen is also found near the end of the stumpy inner process of this part.

The facets and their arrangement are well shown in Fig. 18 and should be compared with others presented, as Sula, Pelecanus, and the Gulls.
Posteriorly the hind eud of either mandibular limb presents a vertical face, and the angle is drawn down below in a somewhat tuberous, trihedral process.

Only about the proximal third of either ramus seems to be pueumatic; the rest of the bone is dense and solid.

Of the hyoid arches.-It will be seen from Fig. 20 that these do not very theroughly develop in an Albatross. The glossohyal and ceratohyals never develop in bone, but are represented in cartilage even in rery old birds (D. albatrus), and always remain so.

A strong antero-mediau process is developed on the inferior aspect of

Fig. 18.

Eig. 19.

Fig. 18. Articnlar extremity of rightramus of mandible of Diomeded albatrus; viewed from above.
Fig. 19. Anterior portion of mandible, from above; samo specimen. Both life size. By the anthor, from the same specimen shown in Fig. 13. the first basibranchial, which offers upon its anterior face the articular facet for the cartilaginous glossohyal.
The body of this basibranchial is subcircular in outline, thick through and through, ant co-ossifies with the median spine-like second basibranchial behind. This latter, like the epibranchial, is finished off by a cartilaginous tip.

Articular pits are found, one on either side of the first basibrauchial for the heads of the long, sleuder, rod-like ceratobranchials. These articulate directly with the short epibrauchials, and these are but slightly curred upward behiml, as we find them in so many other birds.

Of the sternum and pectoral arch.--It would be impossible to convey any idea, by means of a drawing alone, of the extreme lightness of this
bone in an Allatross. Indecd, from the digures (21 and 2.2) 1 think one would be rather led to bedieve that this stermm was a thick and heary one, so massive and ponderous appear all its anterior parts. But not only these, but all its walls, wherever they will admit of it, are absolutely honey-combed with pheumatic cavities. All that bulging promontory in front of the bone is in exaetly the same condition.

The foramina leading to these earities from without are rery numerons, amd oceur in groups in several localities. Chief among these is a long, irregular, seattered row of them adown the entire median furrow of the visceral aspect of the stermal

Fic. 20. Hyoid arches of Diomedea alba trus: vieworl from above; lifo size. From thosame specimen as Fig. 13. body. Collections of others are found up on the sides of the body on the same surface; some of these latter may even perforate the bone.
The principal entrances to the sides, however, are through the collections of apertures foum at the bases of the in-ter-artieular fosse upon the costal borders. Sometimes these are so large that we may obtain a view of the inside and plainly see the osseons trabeculia thrown across in rarious directions to support the peetoral and risceral sternal walls.
Viewing this sternum from in front, we notice a deep and broad median notch, which is concave from side to side, and whose lateral walls on their outer aspects are devoted to the upper portions of the articular facets for the coracoids. This noteh is shat out of sight from either a direct lateral view or a view from abore. Lower down and at the sides we find the remainders of the coracoidal facets. These nearly meet behind the small manubrim; then slope downward and ontward. They are concave in the rertical direction, but nearly straight the other way, and they connect with the others spoken of above at the upper sides of their inner ends.

Another facet is devoted to the coracoid upon the sternm of Diomedet. This is far removed from the first one, being concealed behind a lip of bone at the onter aspect and at the base of either costal process. This articular notel retains the end of the outer angle of the sternal end of the coracoid in place when the arch is articulated as in life.

These shielding lips of bone are well seen upon the pectoral riew of the sternmen shown in Fig. 20 .

A lateral view (Fig. 2.) shows the spreading costal process; the wide costal border below it, with the foramina between the hemapophysial facets; the smooth and convex sternal body, and the thick and fairly well-developed carina.

Fig. 21. Right lateral view of sternum of Diomedea albatrus; life size. By the author, from specimen 3333 of the Smithsonian collection.

The anterior border of this latter is concave forward, while its inferior one is nearly straight and stops short of the xiphoidal end of the body. The carinal augle juts ont quite prominently and is thick through and through, the inferior border being prodnced and expanded upon it.

Regarding it from a pectoral aspect, we find the gencral outline of the bone to be nearly square, with its hinder margin exhibiting one deep notch, with the convex side forward and the postero lateral angles romuded. Analyzing this, however, we see that each postero-lateral portion is made up of one large subcordate process, due to the great median notch above alluded to, and shallow concave notehes, which occur, one on either side, just behind the costal borders, and a median xiphoidal pair, one on either side of the produced middle part of the bone.

This sternum of the Albatross differs principally from the sternum in Rodgers' Fulmar in its being puenmatic, its method of articulation with the coracoids, and the form assumed by its xiphoidal border. Puf: finus differs from both of them in having its xiphoidal border distinetly and profoundly two-notehed, agreeing in: this respect with most of the Jaegers and Gulls.

The shoulder-gidelle (lig. 23), due to the spreading furcola, is very wide from side to side, and, due to the short coracoids, is rather squatty in appearance. The furcula is one of the broadest among living birds,

Fig. 22. Pectoral aspect of the sternum of Diomedea allatrus; life size. By the anthor, from specimen 3333, Smithsonian collection.
the shallowness of its U ahmost equaling that of the extinct Hesperornis. Each clavicular limb is, compared with the other elements of the areh, slender, and of nearly miform caliber throughout. The heads gradually taper ont to a point posteriorly, and articulate with the coracoids and scapulie as they do in Rodgers' Fulmar, described above.

The middle of this arch below is thickened, being concave in front and somewhat produced behind, but bearing no proper hypocieidinm, the modifications being apparently intended to give a greater surface for ligamentons attachment to the carinal angle of the stermum.

In some specimens, when the girdle is articulated in situ, this part of the furenla may rest against the apex of the angle of the carina, being thoronghly strapped to it during life by ligamentous bands.

It will be rememberen, that anchylosis takes place at this point in
old Cormorants, and direct and extensive articnlation in Sula, and, if my wemory serves me right, something of the kind takes place in Pelecanus and Tachypetes.

The coracoid, thongh short, is extremely stout and massive in structure. The antero-posteriorly compressed shaft amounts to little more than a constriction between the head and wonderfally expanded sternal extremity.

The base of this latter possesses articular facets to correspond with those described on the sternum; the onter small one being comected with the large inmer one by a gently concave and thin border.

Each externo-lateral angle of the base of a coracoid is produced as in the Fulmars and Petrels; it is here, however, a broad, quadrate process, instead of being carried out to a point, as in the latter birds. A coracoidal head is much flattened at its summit and smooth, while as a whole this tuberous extremity is directed forward and inward to derelop a shallow facet upon its mesial aspect for the furcula to articulate with, as described above.

Fig. 23. The shoulder-girdle of Diomedea albatrus; anterior view; Jife size. By the anthor, from specimen 3333, Smithsonian collection. Collected by E. Heremleen at Cook's Inlet, Alaska.

Its scapular process is sitnate rather high upon the shaft, being concave from side to side in front, and rather flattened behind. Usually it is pierced by the foramen found in so many other of the water birls, and here quite close to the coracoidal shaft.

The glenoid carity is comparatively small, so far as it is formed in bone, and no donbt in life its proper size is attained through the assistance of other structures. Coracoid and scapula offer each about the same proportional amount of surface to it as commonly seen among birds. A scapula is not much decurver along its blade, and this part of the bone is thickened, being nearly of an equal width throughout its length, though somewhat dilated at its hinder extremity, terminating in a rounded apex. Its head articulates with the entire width of
the scapular process of the coracoid on the transverse facet which occupies its superior margin.

The mesial angle of this head is tilted up to meet the posterior apex of the clavicle, when in situ, as naturally artienlated. The furcula and scapula of this shonlder-girdle are both non-puenmatie, but the coracoids have air admitted to their internal cavities through a feew foramina, which are situated on their posterior aspects in the broad concarity which is formed at each sternal extremity.
This condition of the coracoids in the Albatrosses disagrees with what we found in the Fulmars, these bones in F. rodgersii being completely non-pueumatic.

So far as the Tubinares are concerned, this completes the description of all the material I have at present at my command. Mr Forbes say's that L'Herminier, A. Milue-Edwards, and Huxley have all, in describing rarions points in the osteology of the Tubinares, pointed out similarities of varions kinds between their osseous structure and that of rarious forms of Steganopodes, though they still kept them close to the Laride. Eyton, on the other hand, places the rarions Petrels he describes in the family "Pelecanide," and Gulls forming a separate family by themselves.
"I;at no one will be prepared, I think, to dispute that the Steganoporles are allied to the Herodiones, incloding under that name the Storks and Herons, with Scopus only.
"Thus, on osteological grounds alone, there is sufficient ground for placing the Tubinares in the vicinity of the Steganopodes and Herodines. And, in fact, neglecting the desmognathons structure of the palate-the taxonomic value of which per sc is becoming more and more dubious as our knowledge of the structure of birds increases-there is little in the characters assigned to the groups Pelargomorphie and Dysporomorphe by Professor Huxley that is not applicable to the general Petrel type."

It gives me a great deal of pleasure and satisfaction to quote these passages from Mr. Forbes's work (Coll. Scientif. Mem., p. 434), because of all the varions schemes of classification and relationships proposed for the Tubinares that I have read none so well meet my own views in the premises as these.

OBSERVATIONS UPON SEVERAL OF TILE \triangle NELICAN REPRESENTA. TIVES OF THE ORDER S'TEGANOPODES.
This grom is represented in the fama of this cometry by six ras well-distinguished families, viz:

1. The Phaëthontidar, The Tropic Birds.
?. The Sulide,
2. The Anhingidre,
3. The Phalacrocoracista',
4. The Pelecanidie,
(i. The Fregatidie,

The Gannets.
The Darters.
The Cormorants.
The Pelicans.
The Mano olvar Birds.

At different times anatomists have devoted considerable attention to the structure of these birds, and every year, I think, we are becoming more unanimous upon the affinities they hold with other groups. On the present occasion I can contribute but little to this sulbject, although a good skeleton of Sula bassana-No. 16643 of the Smith sonian colleetion, and kindly loaned me by that institution-will permit me to illustrate the osteology of that representative of the Sulide. Then I will hare something to add about the skeleton in the Cormorants and a word or two about the eraniology of Pelecamus.

OSTEOLOGY OF SULA BASSANA.

Some of the smaller bones in my specimen are missing, such as the major portion of the hyoid arches, a few ribs, and joints of the toes, but in the main it is in excellent condition, and from it no doubt I ean present a very fair review of the skeleton of this type.

Sula is noted for the high pneumatic condition enjoyed by almost its entire skeleton. We fiud this property extended thronghout the axial portion of it, with the exception of the ribs and free caudal vertebre. The pectoral limb is completely so, but in the pelvic extremity the femur is the only bone that appears to be pneumatic.

Of the skull.-In form the superior osseous mandible is flat upon its muder side with cultrate tomium, while superiorly it is convex from side to side, and tapers from base to apex gradually to a point, being a little decured near the extremity. Sometimes we find it pierced by a foramen on this upper side, which leads to its hollow interior, but Sula is without nostıils, though their probable position, did they exist, is perhaps indicated by the posterior end of the longitudinal furrow that marks the mandible upon its lateral aspect (Fig. 24).

An osscous, thoroughly adherent crust overlies the greater part of this superior surface, the only smooth place being a small area in front of the cranio facial hinge. This encelope is very thin; nevertheless when compared with the smooth portion fomm abore it its thickness is easily appreciated. Its entire surface is marked all over by an exquisite anastomosing renation, the ramificatious starting, in some instinces, from minute foramina in its sulbstance.

A lacrymal is a free bone, articulating with a roughened facet of some extent beneath the antero-external angle of the frontal above, and by a smooth, gliding facet on the upper side of the maxillary, which latter bone is thickened in a perpendicular direction and otherwise enlarged in order to offer it the proper amount of surface. As for the bone itself, it is of rather a colmmnar form, with the exception of its extended anterior margin, which is romndly notehed and shoms on its inner side the large pnemmatic opening leading to its hollow interior.

In Gannets there exists, projecting horizontally from the outer margin of the frontal bone, on cither side, from its "prefrontal process," a few millimetres posterior to the fronto lacrymal suture, a small rounded

Fig. 24. Sknll of Sula lassana; viewed from above; mandille removed; life size. By the author, from a specimen in the Smithsonian collection.
ledge of membrano-eartilage, which reminds one of the horizontal portion of the true lacrymal bone in certain gallinaceons birds, as the Perdieince, for example. 'This feature has been studied by me in Sula brewsteri and S. yossi, specimens of which I an indebted to Mr. E. J. Reed of Guaymas, Mexico, who kindly collected them for me. This mem-brano-cartilaginous process probably nerer ossifies in the sulider.

In the adult bird it is impossible to distinguish the exact position, or any of the borders, of the nasal bone.

The maxillo jugal bar shows very plaiuly the suture between the jugal and quadrato-jugal; the latter is much smaller than the other portion, and shows a strong peg. like process upon the inner aspect of its posterior end, which is at right angles to the axis of the bone. It fits in the deep conical socket on the side of the quadrate. Beyoud its enlargement for the lacrymal the maxillary is a thin, horizontal plate of bone, auchylosed in the usual way at its anterior end. Here it really enter's into the apparatus of the cranio facial hinge. A process pointing bactward and apparently coming from the premaxillary is seen over this horizontal plate of the maxillary on either side. Professor Parker found this condition present also in another species of Sula, and this eminent anatomist also describes a "post-maxillary" for these birds which heightens the zygoma, orerlying, as it does, its commencement.

In this specimen the interorbital septrm, which is a thin, smooth plate, shows considerable of a fenestra near its middle, and a few such openings of a rery much smaller size pierce its posterior wall.

The circular optic foramen is entire, is of a size apparently three or four times the caliber of the nerve it passes, and it seems to inelude the smaller foramen to its outer side.
The orbital cavity itself in this Gannet is rery deep, the eaves of its roof almost overhanging the jugal bar beneath. Its superior periphery is swooth and rounded. All in front of the rhinal chamber is filled in by the spongy mass formed by the united maxillo-palatines. The hinder portions of these bones are, however, still distinct, and they have all the appearance of these elements as they are found in birds which possess them as concaro-convex plates facing outward.

The rostrum of the sphenoid is a hollow subcylindrical tube, united above with the interorbital septum. As we proceed anteriorly it becomes more flattened from side to side, and gradually rises upward. At a point about half way between the palatines and cranio-facial hinge it terminates in a process directed forward; above this is the sharpened ethmoidal margin, nearly perpendicular to the long axis of the skull. Osseous wings to the ethmoid never develop in Sula, not ereu rudimentary traces of them being seen at their customary sites.

The cranio-facial hinge is exceedingly perfect in its construction, being composed of a thin plate of bone ocenpying the full wilth of the skinll; the bones both above and below are separated from each other ly a small interval for the entire length of the transrerse line constituting the hinge.

The part played in the mechanism by the maxillaries has already been described above.

We find the sphenotic process to be bifid and jutting directly out from the side of the skill; on the other hand, the mastoidal process is a crest of bone cmrling formart. Between these two the rery wide crotaphyte valley is seen.

The quadrate is a large, massive bone, with its mastoidal head composed of two prominent ellipsoidal trochlear, separated from each other by an intervening notch. Below these the shaft is seen to be rather compressed in an antero-posterior direction, and supports in front at its lower half an mmsually formed orbital process. This is a thin, triangular plate of bone phaced in the rertical plane, and with its apex directed formard. The pmematic foramen of the quadrate usually occurs on the posterior aspect of the shaft in most birds, but here it is sitnated to the juner and lower side of this orbital process.

The pit for the quadrato jugal is eylindrical and deep, and a perforation at its bottom may lead into the hollow of the bone. On the posterior aspect of the quadrate we find an irregular facet for the mandible; it looks directly to the rear and stands at the head of a longitudinal and deep groove which is found between two similarly placed facets on the foot of the bone.

Each pterygoid is a trihedral and compressed bone with prominent borders.
legarding this skull from a superior view (Fig. 24), we see in it a foramen in the superior mandible near the site of the narial opening of the majonity of other birds. From this aspect we also have a good riew of the wonderfulls perfect cranio-facial hinge of the Gannet.

Posterior to this is a broad, smooth area, very slightly conrex, and showing ouly at its himber half the barest trace of a longitudinal furrow. This surface extends from the cranio-facial hinge to the anterior border of the crotaphyte fosse, while laterally it is bounded by the margins of the orbits.

This view also shows the extent and form of these crotaphyte fossa and how they are separated from each other in the median line simply by an extension backward of a rery narrow strip of the general surface that lies beyond them. They are bounded behind by conspicuons and sharpened crests that curl slightly formard, and are best marked laterally, becoming very low as they near the upper part of the supra occipital prominence.
The muler view of the skull reveals a number of interesting points. We find that the anterior portions of the palatines are parallel to each other, separated by a median cleft of a width equal to either one of them, and which becomes pointed behind.
Their anterior puds do not merge into the premaxillary beyond until they are well past the points where the maxillaries are inserted. These anterior prortions are thin, horizontal plates, being directly continuous

Fig. 25. Skull of Sula bassana; right lateral viow; life size. Liy the anthor, from the specimen shown in Fig. 24.
with the horizontal and finsed palatine bodies behind. This latter portion shows a small median carination just in front of the united heads, and the postero external angles are rather sharp, being pointed directly backward.

Anteriorly, the pterygoidal heads meet each other and the fused palatines, the three forming a groove on their npper sides for the rostrum. At their outer ends each pterygoid offers a shallow cup to form the usual articulation with the quadrate of the corresponding side.
Professor Parker found that "in Suld alba the basi-temporals are as little developed as in the Dromectur, less than in any other carinate bird. Behind each moicty there is a large oval opening, not far in front of the occipital condyle; this exposes the loose diploë within. The small Enstachian tubes open at a little distance from each other, in a wide, shallow fossa, on the part where the three elements of the parasphenoid meet." The description of these details agrees with the skull of the specimen before us. Professor Parker, however, was fortunate in haring the skeleton of the car parts in his specimen, and of them he says that "in Sula alba the columella auris is very long and bent. It has a small, cartilaginous, extra supra-stapedial process and a long attenuated stylohyal."

On either side, the entrance to the middle ear in this Gamet, as in others of the same genus, is shallow, and it is situated quite internal to the quadrate bone, while immediately mesiad to it there is a pit of great depth, with its aperture looking downwards, and its base in the vault of the cranium, which seems designed for muscular lodgement; the positions of the usual foramina about it are peculiar, and extremely interesting in these birds.
The bony wings that shield the entrance to the ears are large and tulted up behind. Each one shows the double facet for the mastoidal head of quadrate, the onter one having its imer margin encroached uron by the pit described above.
The postero-internal angle of either of these wings is connected with the side of the elevated basi temporal region by a bony bar. This condition can best be seen from a posterior view. When speaking of the orbital cavity I neglected to mention that the upper part of the septum is longitudinally marked, as in most birds, by an open, single groove for the passage of the olfactory nerve to the rhinal space beyond. The exit for it from the brain-case is very small, indeed, and on one side the bone spreads over it, rendering the nerve track, for a fraction of the initial part of its course, tubular.

The brain-box itself is capacions and notable for its great width over its compression in the vertical direction. Its anterior wall looks directly downward and forward, making an angle of abont 45 degrees with the horizontal palatine bodies. Seen from behind (Fig. 27), the skull shows above the extent to which the erotaphyte fosse approach each other in the median line and the crest that divides them from the occipital area,

Fig. 26. Skull of Sula bassana; basal riew; mandible remored; lifesize. By the anthor, from the saem specimen shown in Figs. 24 and 25.

This latter has the ustal form seen among these comorant like birds, constituting an arch orer the foramen magnum, which oecnpies the center of a concavity below it. The supra-occipital prominence is here distingnished by a low, smooth, median ridge, which traverses this dome-like elevation from the intererotaphyte line to the superior periphery of the foramen magumm.

The plane of this latter aperture is about perpendicular to the plane of the basis cranii. In outline the foramen is broadly elliptical, with the short axis transverse. At its lower margin we see a large ellip-

Fig. 27. Posterior view of the skull of Sula bassana; mandible remored; life size. By the anthor, from the same sprecimen shown in Figs. 24 et seq.
soidal condyle, with its short axis at right angles with that of the foramen. Below this again are the oval openings in the basi-temporal, spoken of by Parker, with the prominent descending processes of this region flanking then on either side.

In form the inferior mandible is spear shaped, its sides tapering gradually to a sharpened apex. These latter, for the onter aspects of their anterior two thinds, show the same character of remated surface as I described for the saperior mandible. Posterior to this, howerer, as well as the immer ramal aspeets, the bone is smooth, haring the same appearance as in most birds.

The symphysis is short and develops a spine behind, which points directly backwad aud is in every respect similar to the process in the same place, between the sides of the lower jaw, in Herons and Alba. trosses. Wach ramms of this mandible is very thick from side to side, but these parts are hollow, and the bone as a whole is rery light, owing to the high state of puemmaticity it enjoys.

The foramina for the entrance of air to its interior are four in number, two on either limb, one being to the mesial side of the artienlar enp, and another larger, longitudinally placed, elliptical one just befoad this concarity on the imer aspect of the ramus near its upper border. The superior side of an articular end has a deep exearation at its center upon which the facets for the quadrate do not eneroach, so that, when the jaw is artieulated, this pit comes opposite the noteh be-

Fig. 23. Inferior mandible of Sula bassana; seen from above; life size. By the author, from the same specimen figured in 24 et seq.
tween the trochlear of the mandibular foot of the quadrate, creating an irregular hollow space there of no inconsiderable size between the bones. Then the quadrate thins covers it there are two entrances that are left open, one in front and one behind, close to the puenmatic foramen.

The mandibular angles are trincate and very nearly perpendicularly so, their surfaces being concave and rery broadly luniform in ontline.

Commencing just in front of an articular cup, we find the superior border of the ramms to be rather wide and romoded as far as the meeting with the dentary. This portion presents near its middle a donble coranoid process, one being in front of the other. The dentary portion of this border has an outer cultrate edge and an inner and somewhat lower romaded one.

The onter elge goes to the anterior apex of the symphysis, the imer one to the hinder termination of the same, while between the two a nearly horizontal surface is contained, which gradually becomes narrower as we proceed in the forward direction.
The lower borders of the mandible are rounded for their entire extent, being produced beneath the articular cups and continnous with the imner houndary of either trumeate angular extremity.

We find that the usual bones which surround the true ramal racuity on the side of the mandible in many birds here interlock with each other so as to completely fill the fenestra in, but in rather an unnsual way and apparently for a definite purpose; for each ramus presents, both on its inner and onter side, an oblique slit, these slits being opposite each other and with their anterior ends in the superior border. It is evident that this otherwise thick jaw is much weakened at these points in each ramus, and this oceurs just posterior to the hinder termination of the horny sheath of the lower beak. In other words, the hinder moities of the mandible are attached to the anterior or dentary portion by thin plates of bone, consisting principally of the splenial elements, and are capable of being bent outward, which in the recent specimen ean, owing to the way the quadrates are attached, be effected to a considerable degree. Now in life these oblique slits have their anterior ends come opposite the thin anterior insertions of the maxillaries, and these latter are jnst beneath the rery mobile craniofacial hinge, so that the whole apparatns is admirably arranged to permit an increase in size of the fore part of the buccal carity when this Gamet swallows the fish that constitntes its food, and which its beak is so well fitted otherwise to capture. Moreover, this possible increase in caliber takes place in that portion of the digestive tract where it is most needed, or where the bony walls of the month would prevent the admission of a very large morsel muless some such mechanism existed-at the very entrance of the buccal carity and just posterior to the more horny thecer of the beak. In Gamets, however, this mobility is to an extent restricted by the integnmental sheath of the beak.

OF THE REMAINDER OF THE SKELETON OF THE TRUNK IN SULA BASSANA.

In this specimen of the common Gannet there are twenty-one free rertebre in the spinal colnmn before we meet the one that first anchyloses to form, with the assistance of the thirteen sncceeding ones, a sacrim for the pelsic bones. Then follow eight more free one: devoted to the movable part of the tail. Finally, we have a long pygostyle that probably contains at least six more.

They are all completely pnemmatic save those ulterior free segments in the tail and the pygostyle. The sixteenth and seventeenth vertebre support eacli a pair of free ribs; the next four belong to the dorsal series, and all have true vertebral ribs articulating with costal ribs from the sternmm, This is also the case with the first two pair that spring from the pelvic sacrum. Behind these there is still another pair of ribs that very much resemble the post-pubie elements in form, whose hremapophyses do not reach the costal borders of the sternum.

In mid-series these ribs support movable epiplemral appendages, attached in the usual way to their posterior borders. As I have already stated abore, they are completely non-pneumatic.

The neural canal is notable for being nearly cylindrical throughont the first twenty-one rertebre; it is only at the region of the enlargement for the brachial plexus that it is rather compressed in the vertical direction.

The atlas has a mimute perforation in its cup, and its neural arch is strikingly broad and deep. Axis rertebra possesses a stumpy neural spine, and its hypapophysis, directed somewhat backward, is very prominent.

The odontoid peg is comparatively small and nearly sessile with the centrum, the latter presenting a concave face below it.

From the third to the fourteenth vertebra, inclusive, the neural spine is a very inconspicuons character, while from this on it gradually makes its appearance, increasing in size until we have the usually quadrate, longitudiual plate of the dorsal series.

Third and fourth vertebre have each a prominent hypapophysis like the one in the axis, but in the fifth this feature nearly entirely disappears.

Sixth vertebra is faintly marked by the carotid canal ; this gradually becomes more and more tubular in the seventh, eighth, and ninth, while in the tenth to the thirteenth, inclusive, it is a closed cylindrical canal of a caliber somewhat less than the neural canal abore it. It disappears entirely from the fourteenth vertebra.

The lateral canals extend from the third rertebra to the fifteenth, inclusice; they are short in any of the segments, and their posterior apertures are far larger than their anterior ones.

At the commencement of the cervical series the parial parapophyses are short and not particularly well developed. They project backward
from the inferior walls of the lateral canals, but as the carotid canal begins to derelop these processes withraw from the former positions, move gradually lower down beneath the centrum, at the same time increase in length and importance, so that in those vertebree where the carotid canal exists they project from its postero inferior border directly backward as parallel and not far-separated spines.
The post-\%y gapophyses do not appear asdivergent limbs mutil we find them so in the eighth vertebra; in all the cervical segments anterior to this oue the facets are situate on the inferior aspect of the tuberous hinder end of the neural arch at its lateral angles.

Metapophyses are scen on the ninth vertebra, but gradually disappear, to be entirely absent in the fourteenth or fifteenth.

The transverse processes in the dorsal region are broad, flat, and horizontal, being directed more and more to the rear as we approach the pelvis. The plates of the neural spines abore do not meet each other when the column is articulated, and there is an entire absence of all interlacing, ossified tendons or metapophyses in this region. In fact, all the vertebre have a very cleam-cut, nou-angular appearance, with the majority of projecting borders rounded.
The articular ends of the centra are constructed upon the "heterocollons" type; the anterior faces in the altimate cervicals and leading dorsals being notably wide and shallow, and often riddled with foramina.

Pygostyle and the free caudal vertebre will be spoken of after the pelvis has been described; in the mean time we will turn our attention for a few moments to the description of the sternum and pectoral arch.

The sternum (Figs. 29 and 30). -This bone in a Gannet has the most nuique form possible. A pectoral aspect of the bone shows that the body has an oblong figure or outline, with the average width nearly equal to half the length. Beyond this parallelogramic part the anterior portion projects as a massive-promontory, and a large part of the carina is beyond this again.
The anterior moiety of the bone is convex on this side, and correspondingly concave on the thoracic aspect. Behind, the body is so flattened out as to be nearly horizontal. The costal borders look outward and slightly upwarl, and each possesses six moderately welldeveloped facets for the costal ribs. There are no pmenmatic foramina in the elongated and shallow intervals.

The principal orifices of this character consist in a diffuse gronp on the superior aspect of the anterior projecting part, within the general concavity of the bone.

Either costal process gracefully rises from its base as a laminated and prominent horn, curving in the anterior direction.
The posterior moieties of the lateral borders are somemhat romuded and extend almost directly backward over the lateral processes behind.
These posteroexternal xiphoidal processes are very long and wide, being rounded off at their extremities and directed a little outward.

They are created by this hinder portion of the bone being so profoundly one-notched that a general concave margin has resulted, with simply a median papilliform process remaining (Fig. 29).

FIG. 29. Sternum of Sula bassana; pec oral aspect; life size. By the anthor, from the same specimen shown in Figs. 24 et seq.

The carina juts ont very prominently in front of the bone; its anterior angle showing a large facet, concave from above downmard, for the fureula, which in life articulates with it. Ahove this the border is again
concare and shanp，white above this，again，there is a compressed proc－ ess that represents the manmbrimm．
The lower border of the keel is straight amb in the horizontal plane， being capped off with a spreading rim．

Fili，30．Silernum of s゙ele bassuna； left latoral view；lifo si\％e．By tho
 shown in litss．Il it seq． This border merges into the sufface of the body of the bone before it half way reaches the xiphoidal noteh．

The sides of the keel are smooth，and neither it nor the under side of the sternal body show，in this specimen，any of the monscular lines nsually present in most birts．

A broad median notch，concave from side to side，convex from before backward， lies between the lofty superior portions of the coracoidal groores．These latter meet in front of it at the mambial base，while behind its surface becomes directly contin－ nous with the general surface of the upper side of the body，and right where the group of puemmatic foramina are fombl．

A coracoidal groove looks forward and ontward for its upper portion，directly up－ ward for its lower，and extends abont half way between the base of the costal process and the manlorimm．It consists of two portions which are directly continnous with each other．The lower one is a shelf－like projection，with a comsex border forward and its articular surface in the horizontal plane．Immediately above this rises a much booaler surface，thongh not so long， which is decidedly courex from above downward．This protion of the facet for the coracoid is considerably higher than the plane in which the borders of the body of the bone are found．It faces forward and outward，and has one regular convexity as its limiting margin above．

Between the point of its outer termina－ tion and the apex of the corresponding costal process the border is one sweeping concavity．

This form of stermum seems to be pecu－ liar to the sultide，and it differs in a mum－ ber of points both from the Cormorants and from the Pelicans．Nor do we sere any－
thing in it to remind us of birds of more distant kinship, as the Albatrosses. In other respects, however, it presents characters common to all of these, and not a few resemblances with the last-named gronp. When this sternum is articulated with the shonder-gitdle its fantastic shape is by $n 0$ means diminished, for the forms of the varions bones which compose the latter, and now to be described, are equally curious and decided departures from the more common style of these elements.

Of the shoulder-girdle (Figs. 33, 34, and 35).-This part of the skeleton is, like so much of the rest of it, thoronghly pnemmatic, the foramina oceurring at their usmal sites.

The clavicles form a broad U-shaped arch, and are completely united below, where, at their under side at the median point, they support an exteusive facet for articulation with the carinal angle of the sterumm. This does away with any such a thing as a hypocleidinm proper, still the bone projects slightly orer this facet.

The clavicular limbs are compressed from side to side, broader abore than below, with the anterior and posterior borders rounded off.

A clavicular head is also compressed in the same manner as its shaft, and tapers off as a pointed process.

The most striking feature about this part of the bone is, however, the extraordinary facet it supports to articulate with the coracoid.

Either one of these is situate at the onter aspect of a head, upon a promontory of bone there found of a proper form to receive it. The facet is of an elliptical outline, placed vertically, and facing directly backward. Something of a notch is found between it and the clavicular head, in which occurs a number of the principal pheumatic foramina of the furcula. On the anterior surface, just below the summit of a coracoid, we find a distinct elliptical facet for articulation with a similar one just described for the fourchette. Between this and the earshaped glenoid facet considerable of a valley is found. On the opposite side of the coracoidal head we find a group of pueumatic foramina and below these a peculiarly formed scapular process, a spine-like apophysis, which rather gracefully curls upmard and then toward the shaft of the bone.

This latter portion of the bone is subeylindrical and smooth, dilating below into a transverse fan-shaped sternal extremity.

A scapuld offers but a very small portion of the articular surface for the glenoid cavity; not more than an eighth of it in the present specimen.

The head of the bone then reaches forward and inward, but only the outer two-thirds of this makes an indifferent articulation with the narrow and ronghened border of the seapular process of the coracoid.

The shaft of the bone is quite stout behind this and somewhat compressed in the rertical direction, while posteriorly it Hattens ont into a broad paddle shaped extremity that finally tapers to a point behind, (Fig. 35.)

Of the pelvis and caudal rertebre.-The first vertebra that anchyloses with the pelvic sacrmm projects entirely beyond the iliac bones (Figs. 31 and 32). Its centrum, in common with the next three that follow it, is much compressed from side to side, and its neural spine is continnous with the common nemal ridge abore of the succeeding segments.

The first five rertebre that lie beneath the ilia throw out their apophyses in the usmal way for their support ; the last two of this series meet the iliac margins. Here the neural canal and centra are large, so as to afford room for the inerease in size of the cord where the sacral plexirs is thrown off.

Twent y eighth and twenty-ninth vertebra have their processes thrown directly upward, so that they are not visible mon direet rentral aspect.

In the thirtieth rertebra they are powerfilly developed and extend directly across the basin to abut by anchylosis against the pelvie walls immediately behind the cotyloid carity on either side. From this point the centra of the mro sacral segments taper quite rapidly in size to an enlarged facet on the posterior aspect of the last one, intended for the first free candal.

The extremities of their diapophyses anchylos in a very thorough mamer with the imer iliae margins, and a lateral view shows their sides to be riddled with pnenmatic foramina between these processes.

Viewing this pelvis from abore, we notice that the entire inner margins of the iliae bones have merged into and completely anchylosed with the sacrum.

This converts the ilio-neural groores into ilio-ncural eanals and gives the boue a very compact appearance.

The anterior margins of the ilia are rounded and are set off with rather a deep and raised emargination.

Post- and preacetabular surfaces are about equal in the extent of their superficial areas.

The anterior iliac surfaces are coneare on either side, and each faces upward and outward to about an equal degrec.

Elerated abore these anterior iliae concavities we find the postacetabular area to be nearly horizontal. Large elliptical foramina are found between the apophyses of the last three or four uro-sacrals, and these latter, likewise, develop quite a prominent nemral crest.

Upon lateral aspect of this pelvis we find a very large cotyloid ring, the inner margin of which is fully equal in size to the onter. A moderately sized antitrochanter oceupies its usual site, with its articular surface directed downward, forward, and outward.

Behind this occurs an enormous elliptical ischiae formmen, that occopies nearly all of this post-acetabular lateral aspect. Throngh the fenestra thas formed we are enabled to get a good lateral view of the wo-sacal vertebre and the extensive memmatic condition they enjoy (Fig. .:31).

The lower margin of the ilium is shary and convex ; it forms the su-
perior boundary to a long, narrow, obturator space, which opens freely into the rather small olturator foramen.

A pro-pubis does not develop in this Gannet, while the post-pubis is for the most of its extent fragile and slender. It begins to increase in

Fig. 31. Pelvis of s'ula bassana, with sacral rib; luft lateral view; life size. By the author, from the same specimen as shown in Fig. 24 et seq.
size just before arriving at a point opposite the end of the ischimm. At this point it offers a small facet on its upper margin for the ischiac. postero-inferior angle, and the two bones are in contact during life

The post-pubis then, retaining its increase in size, curves inward toward the fellow of the opposite side, to terminato in a cartilaginous tip.

The posterior border of this lateral aspeet shows a well-marked ilio-

Fig. 32. Polvis of Sula bassana; viewed from above; life size. By the author, from the same specimen seen in Fig. 24 et seq.
ischiac notch at about the middle of its extent. The outer side of the bone between it and the ischiac foramen is directed upward as well as outward.

As already mentioned above, there are eight free vertebra in the tail, and a large prostyle. The neural spines of these vertebrae are short and stumps; some of them are bifid anteriorly; the nemalarches beneath them close over the spinal canal for the entire length of the series, and it is seen to perforate, for a short distance, the prostyle. The transverse processes are unusually thick and strong, being genrally depressed, and in those segments where chevron bones occur they are anchylose to the centra and hook forward over the preceding vertebra, after a fashion of many other birds wherein they are form.

On either end of any of the centra the facets show but little concavity or convexity.

The pygostyle (Fig. 37) appears to be composed of about six vertebra, of which the three anterior ones can be quite easily made out. It has a very usual form in this bird, being very long and subconical, with sharp superior border and rather decurved apex. Below, it is broad and somewhat convex. Viewing it from in front we notice that it has all the elements present, though in a very rudimentary state, of one of the caudal vertebrae, including a large, prominent, and anchylose chevron bone.

OF THE APPENDICULAR SKELETON.

The pectoral limb.- We find the bone of the brachium to be somewhat longer than the radius and ulna in this limb, bat the material before me will not permit me to say whether or no this holds true with Cormorants and Pelicans. In it the near crest is prominent and projecting, though rather inclined to retreat from the elongated and shallow pneumatic fossa than arch over it, as in many other water birds. The radial crest is reduced to a long, low, inconspicuous ridge, and, in fact, this proximal end of the humerus, as a whole, merges into the shaft so gradually from both sides, and its being so narrow withal, that we are rather impressed with its lack of strength and an absence of a certain robustness so characteristic of other birds of equal size that lead a similar life. This in mo way applies, however, to the shaft itself, for this subcylindrical and hollow bony tube, with its double sigmoidal curve, carries with it the very elements of strength and power.

Its distal extremity lacks but little of being as wide as the widest part of the head of the bone. It is without an ecto condyloid process, has the trochlear very prominent, and presents for examination a deep fossa to the anconal side of the ulnar tubercle.

The shaft of radius for so long a one is unusually straight, and only a slight eure is noticed in the proximal moiety of ulna.
In its continuity the former bone is subtrihedral in its form, with its pneumatic formina situated beneath the transversely expanded portion of the distal emu. Muscular lines mark this radial shaft along its infervor aspect.

For its distal moiety the shaft of ulna is nearly cylindrical in form, Proc. N. M. 88 - 20

but this is eralmally exthanged for the subtrihedral as we pass orer the proximal half of the bone.

It presents for axamination a donble row of feebly marked papilla for the duill but of the secomary feathers.

"arions tones of Sula barsana, from the same specimen as shown in Figs. 2t et seq.: all life size. By the author.

Fig. 33. The furcula, rotated ontward, so as to show facets of articulation for heals of coracoids.
FIG. 34. Right coracoid, anterior aspect.
Fif. 35. Right acapula, onter aspect.
Fig. 36. Anterior aspert of aight tarso-metatarsal bone.
Fig. 37. Right lateral view ol dygostyle, togntur with last coceygal vertebra.
A long, shallow, thongh notable, fossa is seen at the proximal and ancoual side of the shaft. which terminates just beyond the prominent cup-shaper ationation for the blar tubercle of lumeras in a single puenmatis foramen: This fosca has all the appearane of being intended
to lorge an airsac, but the lack of fresh material prevents me from speaking positively upon this point.

Other puemmatic holes occur at the distal end of ulna upon all sides, except the onter one. The olecranon, though large and rather tuherons, would not particularly attract our attention.

A distinst canal upon the outer aspect of the distal emt of the shaft for the passage of the tembons characterizes this bome. The articnlar surface shows nothing of special interest.

As usnal, the carpal segments are but two in number-a reuliale and an ulnare. They present the forms and facets common to these bones generally. Both are puematic and have large apertures for the admis. sion of air to their hollow interions.

The carpo metacorpus also presents a number of these foramina at either of its extremities; the principal one, however, is found just below the trochlear surface formed by os magmm upon the anconal side of the bone. A notable process occurs immediately below it, and another gronp of these air-holes to its outer aspect near the short and inconspicnons first metacarpal.

The main shaft is straight and of good caliber; it is longitudinally groovel nearly its entire length on the palmar site for a tendon going to the fingers. This is best marked mpon the distal moiety of the bone. The metacarpal of midulle digit is also straight for the major extent of its continuty; its extremities becoming enlarged in order to allow it to make the usual comections with index metacarpal. It is rather slender and develops no special processes, as it sometimes does in other representatives of the class.

The expmaded portion of the proximal joint of index digit is not perforated, not eren by the numerous pneumatic foramina which are irregnlarly seattered orer its surface. Below it is produced as a notable

FIG. 38. Right metacarpus of Sule bassena; anconal aspect; life size. By the auther, from the same specimen as shown in Fig. 24.
process, and a process that is seen in some of the extinct birds, as in Ichthyornis, for instance. The shaft of this phatanx is broad and flat anteriorly, and perfectly straight from above downard.

Equal to laaff the length of earpo-metacarpus, the distal phatanx of index digit is of a trinedral form, with an extensive excavation at the posterior aspect of its proximal emd, which is contimed in a lesser degree the entire length of the bone. It bears no claw below, but is fin ished off by a distinct little process.

Pollex phalanx has rery much the same form as the one just deseribed.
but it lacks the fongitndinal excavation down its posterior aspect. Both of the bones ate phemmatice Lastly, we have the smallest phalanx of all belonginge the middle thener. 'This, as matal, is behind the broad proximal joint of imlex, and mot quite equal to half its himer border in length.
(!) the peleic limb-In comparison with the general size of the Gannet this lower extremity is very short, thongh the bones composing its skeleton ate none the less strong in consequence. In the femur we find the axis of the lead and meck making an angle with the longitmelinal axis of the shaft. The head is quite distinct, globmbr, and exeavated as usual on top. Its surface is contimons with the broad articular surface which ocenpies the entire smmmit of the bone. No trochanterian ridge rises above this latter, amt, inderi, this claratere of the femme is but poorly developed.

A phemmatic foramen is always meen at its most common site, on the auterior aspect, just below the superior articular surface.

The shaft is colindrieal, ronghened in some places ly lines and dithose tuberosilies for muscolar attarlment, bent slighty to the front and somewhat to the imer side. At its distal extremity the combles are fashoned after the msmal lattern among birds, lont all their eharacters in Snlu present sort of a lack of stong development. The fibular eleft is but famey marede the intereonly lom noteh or fossal is shallow, and the rimges in front much rommed and inconspicnons.

Something of the same combition is extended to the proximal end of tibio-lersus of the leg, thongh not to such a marked degree, I think. Here the chemial process lises but slighty above the articular summit of the bone, and the por and ecto chemial ridges which descend below it soon merge into the shaft, and are, at the best, lime indifferently dereloperd.

The shaft of this loone is straight and smooth and somewhat compressed from before hackward thonghout. It offers a long aidge to the tibnla amb is broad across where it is fombl. The distal extremity of the bone evinces more chanacter than the nper one. An oblique lridge to confine the extensor tendons is extemded across the deep groove that rontalins them during lite.

Searly parallel with each other, the comblyes are wide apart, prominent and convex in front, to become suppressed and low thin-erested behiml.

The fibula has the usual form seen in birds, but is here particularly interesting from the fact that it does not anchylose with the shaft of the leg-bone matil it armes at the midde of its lower thim, and eren from this low point the remander of the bone, inclading an oval "extermal malleolns," stands ont quite prominently. This bate eomblion of thinges was puinted ont also for lrinutor lumme.

A゙ntubusseme lats a long oral petella, obliqnely marked across its anteriof smface by a groove for the temben of the ambiens musele. This
bone I have already figured in another comection. (Proe. U. S. Nat. Mus., Vol. vir, p. $32 \overline{2}$, P of Fig. E.)

Tarso metatarsas in Sula is strikiugly large in its proportions when compared with the other bones of the limb. In length it is a little more than half as long as tibiotarsus, but being wider and broader it appears much more massive. (Fig. 36.)
Its hypotarsus presents three short, longitudinal clevations of unequal sizes. These inclose two tubular passages for temdons, aml are grooved themselves besides. The back of the shaft is flat, but in front it is much scooped ont abore, where it shows two antero-posterior perforations.

At the distal extremity three large trochlear projections present themselves. They are separated from one another by wide elefts of about an equal depth. These trochlere are placed nearly sild by side, the middle one being the lowest lown, the inmer next, and the outer one the most elevaterl. Their median grooves are best marked behind, but in addition the internal trochlea presents a deep, vertical noteh upon its outer aspect.
The usual arterial perforation pierces the bone above the cleft found between the outer and middle projections, a groose leading in to it from above.

Accessory metatarsal is rather an elongated bone, swang to the lower part of the shaft in the usual way by ligament.

The basal joint of hallux, which it supports, is comparatively more slember for its length than the other joints of the foot.

These latter are in mumber and arrangement for the three anterion toes the same as in the vast majority of the class. They present all the characters usually attributed to the phatinges of the podal digits in birds, and are well proportioned, both as regart their relative calibers and lengths.

NOTES LPON THE SKELETON OF PIIALACROCORAX URTLE.

Three or four years ago I pmblished in "Science" an accomnt of the osteology of this Cormorant, then ealled P. bichistatus. Professor Cones, in his "Key" to North American Birds, secome edition, diul me the honor to reproduce my figures from "Science," and I further added to them in an article on the patella of birds, which appeared in the Proceedings of the U.S. National Musemm (Vol. vir, p. 325). Here I pointed ont the monsual characters of the patella as they were to be fomm in the Cormorants, and gave a front view of this sesamoid in P. urile.

Cormorants are further noted for possessing, in common with I'lotus, an osseous nuchal style (Fig..39, st. o.), vecupsing a position cortesponding to the ligamentum nuchae of most mammals.

As in Plotus, from either side of this freely articulated style of the occiput the temporal museles also arise. This little bone has been remarked mon hy Owen, Brandt, Eytom, Gamon, and other eminent

Onthontomists. Gammed"s paper on the "Anatomy of Plotus cuthinga" is copereally worthy of mention in this comnetion, and contains a great deal of matter of value relating to the struetare of the Daters and Cormorants. (I. Z. S., 1876, p1. :3:\%-315.)

The Cormorants have a molian growe in the superior aspect of their finsed palatines for the: rostrmo of the sphe-

Fic. 39. Left lateral view of the sknll of Phalucrocorax urile: lile size. Jiy the atuthor, liom a sperimers in the Simithsonian Institu. tion. st. o., the oceipital style. moid. I'pon Parker's anthority, too, wo find that in the ' ('ommonats atm oblong ossicle lies on the commencement of the zexomat. It is large in P. carbo and small in P. froculus."

For additional points in the skeleton of the Phelacrocoracide I manst refer the reader to my article in "Science" referrest to above (Vol. II, No. 41,1 . G40), where figures of the stermam, shoukder-girdle, and other parts of the skeleton may be seen.

OBSERVATIONA UPON A SKULL OF PELECANTS FUSCUS.

Twenty-fon years ago 1 collected on the north side of Indian Cay a fine old male of this species of Pelican. Its skinll was duly saved and now forms a part of my private cabinet. From it I made the drawing that ateompanites these remarlis. Huxley, in his Classitication of Birds (P.Z.S., 1867), presents us with an exeetlent umber view of the skall of l'elecamus onocrotalus, but the side view of the same is rery indifferently drawn ant a litthe misleading in some of the minor detals.

Measmring from the transverse cranio-facial groove we find the osseons simperior mandible in this specimen to be sumewhat less than four times as long as the remaining part of the skall. A rertical sectom mate thomgh the middle of the posterion thind of this mandible at right angles to its lomg axis gives an elliptical figure, with the minor axis on the horizontal plame. The anteriortwo-thirds las a shanj lateral edge, white the extremity is ammel with a powerfal decured hook. About hall of the fore part of this emormons beak is compressed from abore downward, a (ompression that is atcompat nied by a gradual widening of the bone to near the end, where it slopes in towatl the hook in the median line.

The maxillo patatines constitute a grat spongy mass that fills mp a
space anterior to the rhinal chamber. They mite in the median line, are bomded above by the premaxillary, below by the united palatines, white the anterior extremity of the maxillary fuses with the mass at about its middle on ejther side.

In form this maxillo palatine mass is wedgeshaped, with the broad end anchylosed with the mnder side of the mited nasal processes of the premaxil'ary.
losteriorly its wall is composed of compact tissne, being at right angles to the longitudinal axis of the skill. It slants from the muder side of the cranio facial linge to the anterior margin of a median foramen, seen just anterior to the keel which is formed hy the mion of the palatines behind.
This posterior maxillo-palatine wall has a cleft in its lower two thime, while two conical pits, placed side by side, lined with compact osseons tissue, occupy its upper third. They have their bases opening in the rhinal chamber, and their apices are piereed by the small subeircular nostrils, one in each conical passage.
The hinder half of the jugal bar is compressed from sille to side, slightly duated, with its end crooked ulp, and in life simply bound to the upper and outer side of the quardrate.
The body of a iachrymal fuses completely with the cranial elements abore, its upper surface assisting in foming the smooth superfices of the frontal region. From this portion it sends downward and slightly backward a descenting process. This is composed of a eqlindrieal pedicel for its upper third and an antero-posterionly compressed portion for the lower two thirds. It fails to reach the maxilary, its tip remaining free just above that perpendicularly compressed bar which passes immediately beneath it.

The interorbital septum is entire, with the exception of a semicirelllar perforation, which is immediately in front of the apenture in the anterior wall of the brain ease that gives egress to the o o_{1},tie nerves.

Each olfactory has a small formen in either orbit at its usial site; the track for the nerve being a broad, shatlow groove beneath the orbital rault.

The mesethmoid is very deep; its anterior border is sharp and thin. Commencing in the aperture of the angle between the pterygoidal shafts, it is carried directly upward and forward to the expanded portion leneath the roof of the cranio-facial region, the edge meeting the median division of the maxillo palatines (Fig. 40).

The lower fourth of this ethmoidal border is thickened and romeded for the articulation of the palatine and pergodidal heads.

Coming, as usual, from the anterior apex of the basi-temporal triangle, the other porton of the rostrum is deenred and meets the point referred to above in the angle between the petergoids.

A quadrate is a rery large bone with a broad, triangular orbital process. Its mastoidal head can hardly be said to he divided into two, as

Fifs. 40. Right lateral view of the sknll and mandibl of Pelecantes fuscus: anterior portion of mandibles not thown.

Fig. 11. Ontline of anterior portion of superion mandible, viewed from above; horny sheath removed.

All these figures life siza. Sy the author, from a specimen he collected in the bahaman Inamds in 186:5, aud at present in hus privato collection.
in most birds, and a large puematic foramen is seen upon it.s onter side-a rery unusual place for this aperture.

Its mandibular foot is narrow antero posteriorly and very wide transersely. Two facets occupy its lower surface, separated from each other by a concave notch which is deepest anteriorly.

The bone also presents a smooth articular surface for the quadratojugal at the point above mentioned, while a large convex facet is offered to the pterygoidal cup of the correspouding side.

We find the external opening to the ear to be very small, and hid from sight upon direct lateral riew by the quadrate. A sphenotic process is well developed, but the mastoidal one is simply a ronghened line; Between the two is a wide crotaphyte valley leading from the fossa of the same name, which is here small, inconspienous, and entirely lateral.

The orbital cavity itself is thus seen to be deep and capacions, lacking bony walls primeipally upon its inferior and anterior aspects.

Upon its under side this skull presents a number of points of interest. The anterior moiety of the superior mandible is here seen to be longitudinally grooved ly a broad and shallow furrow, which gradually becomes somewhat narrower as we proceed backward, to finally merge into the conrex median portion of the hinder half of this great rostrum. Along its median line it is marked ley a fers scattered, slit-like foramina, that lead into its shallow interior, which latter is largely filled with an cpen mass of spongy, osseons tissue, continnous with the max-illo-palatines behind.

The palatine bodies, inchoding their heads, fuse together for their entire extent in the median plane. Resulting from this union we have a single, descending, median carination, composed of the mited inner keels of the palatine bodies and a similar superior methan one composed of the ascending processes of the same.
The latter is truncated just luefore reaching the maxillo-palatine bodies.

This skull lacks basi pteregoil processee, while the pterygoids themsel ves are short, thick set bones, with large anterior and posterior heads, and sharpened longitudinal crests on the superior aspects of theirshafts.

The basi-temporal triangle is small and its area concase. A thm, pointed lip of bone eaves over the entrance to the Eustachian tubes, which are here apparently thoronghly surrounded by bony walls.

We find the foramen magmom sitnated at the boitom of a hoad, deep, and transverse concarity. This excavation is bounded on either side by the dome-like mastoid prominences, in front by the line of the base of the basi-temporal triangle, and behind by a low, smooth ridge which arehes betwreen its lateral bomdaries.

The occipital condyle is ather large, ellipsoilal in form, and placed transversely, while the outline of the foramen is also a broad ellipse, inet with its long axis placed just the other wat. The phame passing
throngh its periphery makes an angle with the plane of the basis-cranit of about 60 degrees.

Regarding this skull from a sinuerior aspect we are to mote the small,

Fig. 43. Skull of Pelecamus fuscus; seen from above; mandible removel and anterior portmon of superior mandible not drawn. Samo specimen as given in Fig. 40; lifo size. By the author.
subcireular openings to the nostils, situated a little berond the irregular line marking the cranio-facial hinge. (Fig. 43.)

Their centers are abont 2 em apart, and each one is sitnated at the posterior end of a groore. These grooves extend the entire length of the superior mandible, passing out on either side of the look at its anterior extremity. At first each is mather on the lateral aspert of the bone, but beyond the posterior half they grachally conserge and get on top, to include between them the prominent conves culmen. Just be fore reaching the hook, however, the included smface beoomes flat and depressed, when the lines terminate, as pointed ont above.

Fig. 43 shows the form and direction of the eranio fiteiad line, and also the broad, smooth surface of the top of the sknll in this Pelican. This is very that for the frontal region, being simply cmed downward at the onter borders. As we proceed backward to the parietal region, however, it gradually becomes more convex and dome-like, though still retaining its absolntely smooth and polished character. This latter may also be seen from a posterior aspect, and below it the high, arehing, and equally smooth occipital area. This latter extends down ou either side over the emormons mastoidal elevations of this bird. We also notice that from this view we may see directly into the foramen magnmm the entire pterygoids are in sight, and the quadrates come down far below the basi cramial plane.

The mandible from the skeleton of a Pelican is represented by a long, narrow loop of bone, which is strikingly devoid of prominent characters. Its symphesis is rery short and decurved, being slightly excavated on its superior aspect behind.

The apper and lower margins of either ramus are rombed for their entire length, while the sides inchaded between them become gradually narrower as we proced in the direction of the symplysis. These are smooth both internally and extermally and both concave in the vertical direction.

Rather more than the posterior moiety of each ramus is hollow for the admission of air, and each presents two foramina, which seem to be intended for that purpose. One of these is on the inner and upper aspect of the ramal shaft, jnst beyond a concavity that ocenrs immediately anterior to the articular cup. The other, elliptical in form, is on the inner and lower aspect, aud abont zem beyond it.

Each articular enp presents two concarities -a central one and another ocenpying the inturued process of this extremits. Both have puenmatic foramina at their bases. The mandibntar angle behind is truncate aud much compressed in the perpendicnlar direction. The under surface of one of these ends is perfectly smooth and gradmally merges into the immer and onter surface of the ramal shaft. Almost complete disappearance of the coronoids has taken phace. Both the sknll and its mandible are highly preumatic.

[^0]: ${ }^{*}$ Report on the Scientific Results of the Voyage of H. M. S. Challenger dming the years $18 \% 3-\% 6$, under the command of Capt. George S. Nares, R. N., F. R. S., aud Capt. Tonrle Thomson, R. N. Prepared under the superinteudence of the iate Sir C. Wyville Thomson, Kni., F. R. S., etc., regins professor of natural history iu the Luiversity of Edinburgh, director of the civilian staff en board, abd now of Jolan Murray, F. R. S. E., one of the naturalists of the expedition, Zölogy, Vol. IV, pt. XI, pp. 1-64; Pls. I-VH (1882).

